直线y=kx-2与椭圆x2+4y2=80相交于不同的两点P、Q,若PQ的中点横坐标为2,则直线的斜率等于______.

直线y=kx-2与椭圆x2+4y2=80相交于不同的两点P、Q,若PQ的中点横坐标为2,则直线的斜率等于______.

题型:不详难度:来源:
直线y=kx-2与椭圆x2+4y2=80相交于不同的两点P、Q,若PQ的中点横坐标为2,则直线的斜率等于______.
答案
设P(x1,y1),Q(x2,y2),
由直线y=kx-2与椭圆x2+4y2=80联立得:(4k2+1)x2-16kx-64=0
因为直线y=kx-2与椭圆x2+4y2=80相交于不同的两点P、Q,所以△=(-16k)2-4×(4k2+1)×(-64)>0,
即1280k2+256>0,此式显然成立.
把P,Q点的坐标待入椭圆方程得:x12+4y12=80
x22+4y22=80
①-②得:
y1-y2
x1-x2
=-
x1+x2
4(y1+y2)
,所以
y1-y2
x1-x2
=-
x1+x2
4[k(x1+x2)-4]

又因为PQ的中点横坐标为2,所以x1+x2=4,
所以k=-
4
4(4k-4)
,即(2k-1)2=0,解得k=
1
2

故答案为
1
2
举一反三
已知抛物线y=-x2+3上存在关于直线x+y=0对称的相异两点A、B,则|AB|=______.
题型:不详难度:| 查看答案
已知椭圆E的右焦点F2与抛物线y2=4


3
x
的焦点重合,对称轴为坐标轴,且经过点A(1,


3
2
)

(1)求椭圆E的方程;
(2)过点D(0,
5
3
)
且斜率存在的直线l交椭圆E于M、N两点,线段MN的中点为Q,点B(-1,0),当l⊥QB时,求直线l的方程.
题型:不详难度:| 查看答案
已知直线y=k(x-3)与双曲线
x2
m
-
y2
27
=1
恒有公共点,则双曲线离心率的取值范围(  )
A.[9,+∞)B.(1,9]C.(1,2]D.[2,+∞)
题型:不详难度:| 查看答案
已知椭圆C:
x2
a2
+
y2
b2
=1 (a>b>0)与直线x+y-1=0相交于A,B两点.
(1)当椭圆的半焦距c=1,且a2,b2,c2成等差数列时,求椭圆的方程;
(2)在(1)的条件下,求弦AB的长度;
(3)当椭圆的离心率e满足


3
3
≤e≤


2
2
,且以AB为直径的圆经过坐标原点O,求椭圆长轴长的取值范围.
题型:不详难度:| 查看答案
已知椭圆
y2
75
+
x2
25
=1
的一条弦的斜率为3,它与直线x=
1
2
的交点恰为这条弦的中点M,则点M的坐标为______.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.