已知椭圆C1:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1、F2,其中F2也是抛物线C2:y2=4x的焦点,M是C1与C2在第一象限的交点,且|M

已知椭圆C1:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1、F2,其中F2也是抛物线C2:y2=4x的焦点,M是C1与C2在第一象限的交点,且|M

题型:天津模拟难度:来源:
已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1、F2,其中F2也是抛物线C2:y2=4x的焦点,M是C1与C2在第一象限的交点,且|MF2|=
5
3

(I)求椭圆C1的方程;   
(Ⅱ)已知菱形ABCD的顶点A、C在椭圆C1上,顶点B、D在直线7x-7y+1=0上,求直线AC的方程.
答案
(I)设点M为(x1,y1),
∵F2是抛物线y2=4x的焦点,
∴F2(1,0);
又|MF2|=
5
3
,由抛物线定义知
x1+1=
5
3
,即x1=
2
3

由M是C1与C2的交点,
∴y12=4x1,即y1
2


6
3
,这里取y1=
2


6
3

又点M(
2
3
2


6
3
)在C1上,
4
9a2
+
8
3b2
=1,且b2=a2-1,
∴9a4-37a2+4=0,∴a2=4或a2=
1
9
c2
(舍去),
∴a2=4,b2=3;
∴椭圆C1的方程为:
x2
4
+
y2
3
=1

(II)∵直线BD的方程为:7x-7y+1=0,在菱形ABCD中,AC⊥BD,
不妨设直线AC的方程为x+y=m,





x+y=m
x2
4
+
y2
3
=1

∴消去y,得7x2-8mx+4m2-12=0;
∵点A、C在椭圆C1上,
∴(-8m)2-4×7×(4m2-12)>0,即m2<7,∴-


7
<m<


7

设A(x1,y1),C(x2,y2),
则x1+x2=
8m
7
,y1+y2=(-x1+m)+(-x2+m)=-(x1+x2)+2m=-
8m
7
+2m=
6m
7

∴AC的中点坐标为(
4m
7
3m
7
)

由菱形ABCD知,点(
4m
7
3m
7
)
也在直线BD:7x-7y+1=0上,
即7×
4m
7
-7×
3m
7
+1=0,∴m=-1,由m=-1∈(-


7


7
)
知:
直线AC的方程为:x+y=-1,即x+y+1=0.
举一反三
已知椭圆
x2
m
+
y2
n
=1与双曲线
x2
p
-
y2
q
=1(m,n,p,q∈R+)有共同的焦点F1、F2,P是椭圆和双曲线的一个交点,则|PF1|•|PF2|=______.
题型:不详难度:| 查看答案
已知两定点E(-


2
,0),F(


2
,0),动点P满足


PE


PF
=0,由点P向x轴作垂线PQ,垂足为Q,点M满足


PQ
=


2


MQ
,点M的轨迹为C.
(Ⅰ)求曲线C的方程;
(Ⅱ)若直线l交曲线C于A、B两点,且坐标原点O到直线l的距离为


2
2
,求|AB|的最大值及对应的直线l的方程.
题型:不详难度:| 查看答案
过双曲线x2-
y2
2
=1
的右焦点作直线交双曲线于A,B两点,且|AB|=4,则这样的直线有______条.
题型:不详难度:| 查看答案
当a∈(0,π]时,方程x2sina-y2cosa=1表示的曲线可能是______.(填上你认为正确的序号)
①圆;②两条平行线;③椭圆;④双曲线;⑤抛物线.
题型:不详难度:| 查看答案
若不论k为何值,直线y=k(x-2)+b与曲线x2-y2=1总有公共点,则b的取值范围是(  )
A.(-


3


3
)
B.[-


3


3
]
C.(-2,2)D.[-2,2]
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.