已知P(-4,-4),点Q是离心率为22且焦点在x轴上的椭圆x2+my2=16上的动点,M是线段PQ上的点,且满足PM=13MQ,则动点M的轨迹方程是_____

已知P(-4,-4),点Q是离心率为22且焦点在x轴上的椭圆x2+my2=16上的动点,M是线段PQ上的点,且满足PM=13MQ,则动点M的轨迹方程是_____

题型:衢州一模难度:来源:
已知P(-4,-4),点Q是离心率为


2
2
且焦点在x轴上的椭圆x2+my2=16上的动点,M是线段PQ上的点,且满足


PM
=
1
3


MQ
,则动点M的轨迹方程是______.
答案
∵椭圆焦点在x轴上的x2+my2=16的离心率为


2
2

16-
16
m
16
=
1
2

∴m=2
∴椭圆的方程为
x2
16
+
y2
8
=1

设M(x,y),Q(a,b),则


PM
=
1
3


MQ
,P(-4,-4),
(x+4,y+4)=
1
3
(a-x,b-y)

∴a=4x+12,b=4y+12
a2
16
+
b2
8
=1

(4x+12)2
16
+
(4y+12)2
8
=1

∴(x+3)2+2(y+3)2=1.
故答案为:(x+3)2+2(y+3)2=1
举一反三
已知A、B是抛物线x2=4y上的两点,线段AB的中点为M(2,2),则|AB|等于______.
题型:不详难度:| 查看答案
已知中心在原点,焦点在x轴上的椭圆C的离心率为
1
2
,其中一个顶点是抛物线x2=-4


3
y
的焦点.
(I)求椭圆C的标准方程;
(Ⅱ)是否存在过点P(2,1)的直线l与椭圆C交于不同的两点A,B满足


PA


PB
=
5
4
,若存在,求出直线l的方程;若不存在,请说明埋由.
题型:德州二模难度:| 查看答案
已知长方形ABCD,AB=2


2
,BC=


3
3
.以AB的中点O为原点建立如图所示的平面直角坐标系xOy.
(I)求以A,B为焦点,且过C,D两点的椭圆P的标准方程;
(Ⅱ)已知定点E(-1,0),直线y=kx+t与椭圆P交于M、N相异两点,证明:对作意的t>0,都存在实数k,使得以线段MN为直径的圆过E点.魔方格
题型:不详难度:| 查看答案
如图,曲线C1
x2
a2
+
y2
b2
=1(b>a>0,y≥0)与抛物线C2:x2=2py(p>0)的交点分别为A,B,曲线C1与抛物线C2在点A处的切线分别为l1和l2,且斜率分别为k1和k2
(I)k1•k2是否与p无关?若是,给出证明;若否,给以说明;
(Ⅱ)若l2与y轴的交点为D(0,-2),当a2+b2取得最小值9时,求曲线C1与抛物线C2的方程.魔方格
题型:枣庄一模难度:| 查看答案
过椭圆x2+2y2=2的左焦点引一条倾斜角为450的直线,求以此直线与椭圆的两个交点及椭圆中心为顶点的三角形的面积.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.