(1)袋中共有6个除了颜色外完全相同的球,其中有1个红球,2个白球和3个黑球,从袋中任取两球,求两球颜色为一白一黑的概率.(2)2人相约上午7点到8点之间在某地
题型:不详难度:来源:
(1)袋中共有6个除了颜色外完全相同的球,其中有1个红球,2个白球和3个黑球,从袋中任取两球,求两球颜色为一白一黑的概率. (2)2人相约上午7点到8点之间在某地会面,约定先到的人等候另一人20分钟后可以离开,试求两人能见面的概率. |
答案
(1)根据题意,袋中共有6个球,从中任取2个,有C62=15种不同的取法, 6个球中,有2个白球和3个黑球,则取出的两球为一白一黑的情况有2×3=6种; 则两球颜色为一白一黑的概率P==. (2)由题意知本题是一个几何概型,设事件A为“两人能会面”, 试验包含的所有事件是Ω={(x,y)|7<x<8,7<y<8},并且事件对应的集合表示的面积是s=1, 满足条件的事件是A={(x,y)|7<x<8,7<y<8,|x-y|<} 所以事件对应的集合表示的面积是1-2×××=, 根据几何概型概率公式得到P=. |
举一反三
已知x的取值范围为[0,10],如图输入一个数x,使得输出的x满足6<x≤8的概率为 ( )
|
甲、乙两人都准备于下午12:00-13:00之间到某车站乘某路公交车外出,设在12:00-13:00之间有四班该路公交车开出,已知开车时间分别为12:20;12:30;12:40;13:00,分别求他们在下述情况下坐同一班车的概率. (1)他们各自选择乘坐每一班车是等可能的; (2)他们各自到达车站的时刻是等可能的(有车就乘). |
如图,正方形ABCD中,点P在边CD上,现有质地均匀的粒子散落在正方形ABCD内,则粒子落在△PBA内的概率等于( )
|
函数f(x)=3x2-x-1,x∈[-1,2],任取x0∈[-1,2]使f(x0)≥1的概率为______. |
一个十字路口的交通信号灯,红灯、黄灯、绿灯亮的时间分别为30秒、5秒、60秒,则某辆车到达路口,遇见绿灯的概率为( ) |
最新试题
热门考点