两人相约在7:30到8:00之间相遇,早到者应等迟到者10分钟方可离去,如果两人出发是各自独立的,在7:30到8:00之间的任何时刻是等可能的,问两人相遇的可能
题型:不详难度:来源:
两人相约在7:30到8:00之间相遇,早到者应等迟到者10分钟方可离去,如果两人出发是各自独立的,在7:30到8:00之间的任何时刻是等可能的,问两人相遇的可能性有多大______. |
答案
视30分钟为一个单位1.设两人到达约会地点的时刻分别为x,y,依题意,必须满足|x-y|≤才能相遇.我们把他们到达的时刻分别作为横坐标和纵坐标,于是两人到达的时刻均匀地分布在一个边长为1的正方形Ⅰ内,如图所示,而相遇现象则发生在阴影区域G内,即甲、乙两人的到达时刻(x,y)满足|x-y|≤,所以两人相遇的概率为区域G与区域Ⅰ的面积之比: P===. 故答案为:.
|
举一反三
a1是[0,1]上的均匀随机数,a=(a1-0.5)*2,则a是区间______上的均匀随机数. |
已知正方形ABCD的边长为2,H是边DA的中点.在正方形ABCD内部随机取一点P,则满足|PH|<的概率为( ) |
已知关于x的一元二次函数f(x)=ax2-bx+1,分别从集合P和Q中随机取一个数a和b得到数列(a,b). (1)若P={x|1≤x≤3,x∈Z},Q={x|-1≤x≤4,x∈Z},列举出所有的数对(a,b),并求函数y=f(x)有零点的概率; (2)若P={x|1≤x≤3,x∈R},Q={x|-1≤x≤4,x∈R},求函数y=f(x)在区间[1,+∞)上是增函数的概率. |
已知区域M:x2+y2≤4,区域N:-x≤y≤x,随机向区域M中投放一点.该点落在区域N内的概率为( ) |
在面积为9的正方形ABCD内部随机取一点P,则能使△PAB的面积大于3的概率是( ) |
最新试题
热门考点