甲、乙两名教师进行乒乓球比赛,采用七局四胜制(先胜四局者获胜).若每一局比赛甲获胜的概率为,乙获胜的概率为,现已赛完两局,乙暂时以2∶0领先.(1)求甲获得这次

甲、乙两名教师进行乒乓球比赛,采用七局四胜制(先胜四局者获胜).若每一局比赛甲获胜的概率为,乙获胜的概率为,现已赛完两局,乙暂时以2∶0领先.(1)求甲获得这次

题型:不详难度:来源:
甲、乙两名教师进行乒乓球比赛,采用七局四胜制(先胜四局者获胜).若每一局比赛甲获胜的概率为,乙获胜的概率为,现已赛完两局,乙暂时以2∶0领先.
(1)求甲获得这次比赛胜利的概率;
(2)设比赛结束时比赛的局数为随机变量X,求随机变量X的概率分布和数学期望EX.
答案
(1) 甲获得这次比赛胜利的概率为;(2) X的概率分布为:
X
4
5
6
7
P





解析

试题分析:(1)甲获得这次比赛胜利情况有二,一是比赛六局结束,甲连续赢了四局,一是比赛了七局,甲在后五局中赢了四局,且最后一局是甲赢,显然这两种情况彼此互斥,故分别计算出这两个事件的概率,求其和即得甲获得这次比赛胜利的概率.(2)设比赛结束时比赛的局数为,由题意得随机变量可能的取值为4,5,6,7,分别求出随机变量的概率,从而得分布列和数学期望.本题考查次独立重复试验中恰好发生次的概率,解题的关键是正确理解两个事件、“甲获得这次比赛胜利”,再由概率的计算公式计算出概率.本题是概率中的有一定综合性的题,对事件正确理解与分类是很关键.
试题解析:(1)设甲获胜为事件A,则甲获胜包括甲以4∶2获胜和甲以4∶3获胜两种情况.
设甲以4∶2获胜为事件A1,则      2分
设甲以4∶3获胜为事件A2,则   5分
P(A)=.         6分
(2)随机变量可能的取值为4,5,6,7,
=.
.
.
.
X的概率分布为:
X
4
5
6
7
P




       12分
举一反三
某中学从高中三个年级选派4名教师和20名学生去当文明交通宣传志愿者,20名学生的名额分配为高一12人,高二6人,高三2人.
(1)若从20名学生中选出3人做为组长,求他们中恰好有1人是高一年级学生的概率;
(2)若将4名教师随机安排到三个年级(假设每名教师加入各年级是等可能的,且各位教师的选择是相互独立的),记安排到高一年级的教师人数为X,求随机变量X的分布列和数学期望.
题型:不详难度:| 查看答案
某商场为吸引顾客消费推出一项促销活动,促销规则如下:到该商场购物消费满100元就可转动如图所示的转盘一次,进行抽奖(转盘为十二等分的圆盘),满200元转两次,以此类推;在转动过程中,假定指针停在转盘的任一位置都是等可能的;若转盘的指针落在A区域,则顾客中一等奖,获得10元奖金;若转盘落在B区域或C区域,则顾客中二等奖,获得5元奖金;若转盘指针落在其他区域,则不中奖(若指针停到两区间的实线处,则重新转动).若顾客在一次消费中多次中奖,则对其奖励进行累加.已知顾客甲到该商场购物消费了268元,并按照规则参与了促销活动.

(1)求顾客甲中一等奖的概率;
(2)记X为顾客甲所得的奖金数,求X的分布列及其数学期望.
题型:不详难度:| 查看答案
某网络营销部门为了统计某市网友2013年11月11日在某淘宝店的网购情况,随机抽查了该市当天名网友的网购金额情况,得到如下数据统计表(如图):

若网购金额超过千元的顾客定义为“网购达人”,网购金额不超过千元的顾客定义为“非网购达人”,已知“非网购达人”与“网购达人”人数比恰好为
(1)试确定的值,并补全频率分布直方图(如图(2)).
(2)该营销部门为了进一步了解这名网友的购物体验,从“非网购达人”、“网购达人”中用分层抽样的方法确定人,若需从这人中随机选取人进行问卷调查.设为选取的人中“网购达人”的人数,求的分布列和数学期望.
题型:不详难度:| 查看答案
设某项试验的成功率是失败率的2倍,用随机变量X去描述1次试验的成功次数,则P(X=0)等于(  )
A.0B.C.D.

题型:不详难度:| 查看答案
设随机变量X的概率分布为
X
1
2
3
4
P

m


则P(|X-3|=1)=     .
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.