(Ⅰ)记“该射手向甲靶射击一次并击中”为事件A, “该射手向乙靶射击一次并击中”为事件B, 则由题意得,, 由各次射击结果互不影响得, 即, 解得p1=,p2=.…(3分) (Ⅱ)η的所有可能取值为0,1,2,3,6.…(4分) 记“该射手第i次射击击中目标”为事件Ai(i=1,2,3), 则P(η=0)=P()=(1-)3=,P(η=1)=P(A1+A2+A3)=P(A1)+P(A2)+P(A3) =×(1-)2+(1-)××(1-)+(1-)2×=,P(η=2)=P(A1A3)=×(1-)×=,P(η=3)=P(A1A2+A2A3)=P(A1A2)+P(A2A3)=()2×(1-)+(1-)×()2=,P(η=6)=P(A1A2A3)=()3=. 所以η的分布列为:
η | 0 | 1 | 2 | 3 | 6 | P | | | | | |
举一反三
甲、乙两位同学都参加了本次调考,已知甲做5道填空题的正确率均为0.6,设甲做对填空题的题数为ξ,乙做对填空题的题数为η,且P(η=k)=a•25-k(k=1、2、3、4、5)(a为正常数),试分别求出ξ,η的分布列,并用数学期望来分析甲、乙两位同学解答填空题的水平. | 某学校举行知识竞赛,第一轮选拔共设有A,B,C,D四个问题,规则如下:①每位参加者计分器的初始分均为10分,答对问题A,B,C,D分别加1分,2分,3分,6分,答错任意题减2分; ②每答一题,计分器显示累计分数,当累积分数小于8分时,答题结束,淘汰出局;当累积分数大于或等于14分时,答题结束,进入下一轮;答完四题累计分数不足14分时,答题结束淘汰出局; ③每位参加者按A,B,C,D顺序作答,直至答题结束. 假设甲同学对问题A,B,C,D回答正确的概率依次为,,,,且各题回答正确与否相互之间没有影响. (Ⅰ)求甲同学能进入下一轮的概率; (Ⅱ)用ξ表示甲同学本轮答题的个数,求ξ的分布列和数学期望Eξ. | 某班学生春假需要选择春游线路,已知甲寝室与乙寝室各有6位同学,每人选择一条线路.甲寝室选择去乌镇游玩的有1人,选择去横店游玩的有5人,乙寝室选择去乌镇游玩的有2人,选择去横店游玩的有4人,现从甲寝室、乙寝室中各任选2人分析游玩线路问题. (Ⅰ)求选出的4人均选择游玩横店的概率; (Ⅱ)设ξ 为选出的4个人中选择游玩乌镇的人数,求ξ 的分布列和数学期望Eξ | 一个口袋中有4个白球,2个黑球,每次从袋中取出一个球. (1)若有放回的取2次球,求第二次取出的是黑球的概率; (2)若不放回的取2次球,求在第一次取出白球的条件下,第二次取出的是黑球的概率; (3)若有放回的取3次球,求取出黑球次数X的分布列及E(X). | 已知甲同学每投篮一次,投进的概率均为. (1)求甲同学投篮4次,恰有3次投进的概率; (2)甲同学玩一个投篮游戏,其规则如下:最多投篮6次,连续2次不中则游戏终止.设甲同学在一次游戏中投篮的次数为X,求X的分布列. |
最新试题
热门考点
|