在平面直角坐标系xOy中,O是坐标原点,设函数f(x)=k(x-2)+3的图象为直线l,且l与x轴、y轴分别交于A、B两点,给出下列四个命题:①存在正实数m,使

在平面直角坐标系xOy中,O是坐标原点,设函数f(x)=k(x-2)+3的图象为直线l,且l与x轴、y轴分别交于A、B两点,给出下列四个命题:①存在正实数m,使

题型:不详难度:来源:
在平面直角坐标系xOy中,O是坐标原点,设函数f(x)=k(x-2)+3的图象为直线l,且l与x轴、y轴分别交于A、B两点,给出下列四个命题:
①存在正实数m,使△AOB的面积为m的直线l仅有一条;
②存在正实数m,使△AOB的面积为m的直线l仅有两条;
③存在正实数m,使△AOB的面积为m的直线l仅有三条;
④存在正实数m,使△AOB的面积为m的直线l仅有四条.
其中所有真命题的序号是(  )
A.①②③B.③④C.②④D.②③④
答案
∵直线y=k(x-2)+3与x轴,y轴交点的坐标分别是,A(2-
3
k
,0),B(0,3-2k).
S=
1
2
×|2-
3
k
|×|3-2k|=
1
2
×
(2k-3)2
|k|

当k>0时,S=
1
2
×
4k2-12k+9
k
=
1
2
×(4k+
9
k
-12),
∵4k+
9
k
≥2


4×9
=12,当且仅当k=
3
2
时取等号.
∴当S=m>0时,在k>0时,k有两值;
当k<0时,S=
1
2
×
(2k-3)2
|k|
=
1
2
×
4k2-12k+9
-k
=
1
2
×[(-4k+
9
-k
)+12],
∵-4k+
9
-k
≥2


4×9
=12.当且仅当k=-
3
2
时取等号.
当m>12时,在k<0时,k有两值.;
∴当 m=0时,仅有一条直线使△AOB的面积为m,∴①不正确;
当0<m<12时,仅有两条直线使△AOB的面积为m,∴②正确;
当m=12时,仅有三条直线使△AOB的面积为m,∴③正确;
当m>12时,仅有四条直线使△AOB的面积为m,∴④正确.
故选D
举一反三
设函数f(x)是定义在R上的偶函数,且对于任意的x∈R恒有f(x+1)=-f(x),已知当x∈[0,1]时,f(x)=3x.则
①2是f(x)的周期;
②函数f(x)在(2,3)上是增函数;
③函数f(x)的最大值为1,最小值为0;
④直线x=2是函数f(x)图象的一条对称轴.
其中所有正确命题的序号是______.
题型:不详难度:| 查看答案
下列说法:
①当x>0且x≠1时,有lnx+
1
lnx
≥2;
②函数y=ax的图象可以由函数y=2ax(其中a>0且a≠1)平移得到;
③△ABC中,A>B是sinA>sinB成立的充要条件;
④已知Sn是等差数列{an}的前n项和,若S7>S5,则S9>S3
⑤函数y=f(1+x)与函数y=f(1-x)的图象关于直线x=1对称.
其中正确的命题的序号为______.
题型:不详难度:| 查看答案
符号[x]表示不超过x的最大整数,如[2.5]=3,[-1.1]=-2,定义函数{x}=x-[x],给出下列四个命题:
①函数{x}的定义域是R,值域为[0,1];
②方程{x}=
1
2
有无数解;
③函数{x}是周期函数;
④函数{x}是增函数.
其中真命题的序号有(  )
A.②③B.①④C.③④D.②④
题型:不详难度:| 查看答案
已知函数f(x)与g(x)的定义域为R,有下列5个命题:
①若f(x-2)=f(2-x),则f(x)的图象自身关于直线y轴对称;
②y=f(x-2)与y=f(2-x)的图象关于直线x=2对称;
③函数y=f(x+2)与y=f(2-x)的图象关于y轴对称;
④f(x)为奇函数,且f(x)图象关于直线x=
1
2
对称,则f(x)周期为2;
⑤f(x)为偶函数,g(x)为奇函数,且g(x)=f(x-1),则f(x)周期为2.
其中正确命题的序号为______.
题型:不详难度:| 查看答案
已知函数y=
x
x-1
,则下列四个命题中错误的是(  )
A.该函数图象关于点(1,1)对称
B.该函数的图象关于直线y=2-x对称
C.该函数在定义域内单调递减
D.将该函数图象向左平移一个单位长度,再向下平移一个单位长度后与函数y=
1
x
的图象重合
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.