有下列叙述:①集合{x∈N|x=6a,a∈N *}中只有四个元素;②设a>0,将a2a•3a2表示成分数指数幂,其结果是a56;③已知函数f(x)=1+x21-

有下列叙述:①集合{x∈N|x=6a,a∈N *}中只有四个元素;②设a>0,将a2a•3a2表示成分数指数幂,其结果是a56;③已知函数f(x)=1+x21-

题型:不详难度:来源:
有下列叙述:
①集合{x∈N|x=
6
a
,a∈N *}
中只有四个元素;
②设a>0,将
a2


a•
3a2

表示成分数指数幂,其结果是a
5
6

③已知函数f(x)=
1+x2
1-x2
(x≠±1)
,则f(2)+f(3)+f(4)+f(
1
2
)+f(
1
3
)+f(
1
4
)=3

④设集合A=[0,
1
2
B=[
1
2
,1]
,函数f(x)=





x+
1
2
 
(x∈A)
-2x+2 (x∈B)
,若x0∈A,且f[f(x0)]∈A,则x0的取值范围是(
1
4
1
2
)

其中所有正确叙述的序号是______.
答案
①∵集合{x∈N|x=
6
a
,a∈N *}
={1,2,3,6},
∴集合{x∈N|x=
6
a
,a∈N *}
中只有四个元素,故①正确;
②设a>0,将
a2


a•
3a2

表示成分数指数幂,其结果是a
7
6
,故②不正确;
③∵函数f(x)=
1+x2
1-x2
(x≠±1)

∴f(x)+f(
1
x
)=
1+x2
1-x2
+
1+
1
x2
1-
1
x2
=0,
∴f(2)+f(3)+f(4)+f(
1
2
)+f(
1
3
)+f(
1
4
)=0,故③不正确;
④集合A=[0,
1
2
B=[
1
2
,1]
,函数f(x)=





x+
1
2
 
(x∈A)
-2x+2 (x∈B)

x0∈A,且f[f(x0)]∈A,





0≤x0
1
2
0≤
1
2
+x0
1
2
,∴x0的取值范围是{0},故④不正确.

故答案为:①.
举一反三
已知命题:末位数是0的整数能被5整除.将此命题改写成“若p则q”的形式,写出此命题的否命题、逆命题与逆否命题,并分别指出四种命题的真假.
题型:不详难度:| 查看答案
符号[x]表示不超过x的最大整数,如[2.3]=2,[-1.3]=-2.若定义函数f(x)=x+[x],则下列命题中所有不正确命题的序号为______.
①函数f(x)的定义域为R;  
②函数f(x)的值域为R;   
③函数f(x)是奇函数;
④函数f(x)是周期函数;    
⑤函数f(x)是R上的增函数.
题型:不详难度:| 查看答案
写出“若x=2,则x2-5x+6=0”的逆命题、否命题、逆否命题,并判其真假.
题型:不详难度:| 查看答案
①y=tanx在定义域上单调递增;
②若锐角α、β满足cosα>sinβ,则α+β<
π
2

③f(x)是定义在[-1,1]上的偶函数,且在[-1,0]上是增函数,若θ∈(0,
π
4
)
,则f(sinθ)>f(cosθ);
④函数y=4sin(2x-
x
3
)的一个对称中心是(
x
6
,0);
其中真命题的序号为______.
题型:不详难度:| 查看答案
关于平面向量


a


b


c
.有下列三个命题:
①若


a


b
=


a


c
,则


b
=


c

②若


a
=(1,k),


b
=(-2,6)


a


b
,则k=-3;
③非零向量


a


b
满足|


a
|=|


b
|=|


a
-


b
|,则


a


a
+


b
的夹角为30°.
其中真命题的序号为______.(写出所有真命题的序号)
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.