以下四个关于圆锥曲线的命题中:①设A、B为两个定点,k为非零常数,|PA|-|PB|=k,则动点P的轨迹为双曲线;②过定圆C上一定点A作圆的动点弦AB,O为坐标

以下四个关于圆锥曲线的命题中:①设A、B为两个定点,k为非零常数,|PA|-|PB|=k,则动点P的轨迹为双曲线;②过定圆C上一定点A作圆的动点弦AB,O为坐标

题型:不详难度:来源:
以下四个关于圆锥曲线的命题中:
①设A、B为两个定点,k为非零常数,|


PA
|-|


PB
|=k
,则动点P的轨迹为双曲线;
②过定圆C上一定点A作圆的动点弦AB,O为坐标原点,若


OP
=
1
2
(


OA
+


OB
)
,则动点P的轨迹为椭圆;
③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
④双曲线
x2
35
-y2=1
和椭圆
x2
25
+
y2
9
=1
有相同的焦点.
其中真命题的序号为______(写出所有真命题的序号)
答案
根据双曲线的定义,有绝对值,且k的范围是k<|AB|,∴①×;


OP
=
1
2


OA
+


OB
),∴P为弦AB的中点,不妨在单位圆x2+y2=1中,定点A(1,0),动点B(x1,y1),设P(x,y),用代入法求得P的轨迹方程是(x-
1
2
)
2
+y2=
1
4

∴点P的轨迹为圆,∴②×;
∵2x2-5x+2=0的两根是2,
1
2
,椭圆的离心率范围是(0,1),双曲线的离心率范围是(1,∞)∴③√.
∵④中双曲线的焦点是(±6,0),椭圆的焦点(±4,0),∴④×.
故答案是③
举一反三
设命题p:a>1;命题q:不等式-3x≤a对一切正实数均成立.
(1)若命题q为真命题,求实数a的取值范围;
(2)命题“p或q”为真命题,且“p且q”为假命题,求实数a的取值范围.
题型:不详难度:| 查看答案
已知命题p:方程
x2
2m
-
y2
m-1
=1
表示焦点在y轴上的椭圆;命题q:双曲线
y2
5
-
x2
m
=1
的离心率e∈(1,2),若p、q有且只有一个为真,求m的取值范围.
题型:不详难度:| 查看答案
已知命题p:(x+1)(x-5)≤0,命题q:1-m≤x≤1+m(m>0).
(1)若p是q的充分条件,求实数m的取值范围;
(2)若m=5,“p或q”为真命题,“p且q”为假命题,求实数x的取值范围.
题型:海门市模拟难度:| 查看答案
命题P:关于x的方程mx2-(1-m)x+m=0没有实数解;命题Q:关于x的方程x2-(m+3)x+m+3=0有两个不等正实数根;若命题P且命题非Q为真,求m值的取值范围.
题型:不详难度:| 查看答案
在数列{an}中,如果对任意的n∈N*,都有
an+2
an+1
-
an+1
an
(λ为常数),则称数列{an}为比等差数列,λ称为比公差.则下列命题中真命题的序号是______
①若数列{Fn}满足F1=1,F2=1,Fn=Fn-1+Fn-2(n≥3),则该数列不是比等差数列;
②若数列{an}满足an=(n-1)•2n-1,则数列{an}是比等差数列,且比公差λ=2;
③“等差数列是常数列”是“等差数列成为比等差数列”的充分必要条件;
④数列{an}满足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N),则此数列的通项为an=
n•3n
3n-1
,且{an}不是比等差数列.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.