已知p:-x2+8x+20≥0,q:x2-2x+1-m2≤0(m>0).若“非p”是“非q”的充分不必要条件,求实数m的取值范围.
题型:不详难度:来源:
已知p:-x2+8x+20≥0,q:x2-2x+1-m2≤0(m>0).若“非p”是“非q”的充分不必要条件,求实数m的取值范围. |
答案
∵-x2+8x+20≥0⇒-2≤x≤10; ∵m>0,△>0 ∴x2-2x+1-m2≤0(m>0)⇒(x-1+m)(x-1-m)≤0⇒1-m≤x≤1+m ∵“非p”是“非q”的充分不必要条件,∴q是P的充分不必要条件 ∴集合q是集合P的真子集, ∴⇒m≤3 实数m的取值范围是0<m≤3. |
举一反三
已知p:|1-|≤2,q:x2-2x+1-m2≤0(m>0),若¬p是¬q的充分而不必要条件,求实数m的取值范围. |
已知p:|1-|≤2,q:x2-2x+1-m2≤0,若¬p是¬q的必要不充分条件,求实数m的取值范围. |
已知p、q为两个命题,则“p∨q是假命题”是“¬p为真命题”的______条件. |
已知命题p:实数m满足m2-7am+12a2<0(a>0),命题q:实数m满足方程+=1表示焦点在y轴上的椭圆,且非q是非p的充分不必要条件,求a的取值范围. |
(1)设集合M={x|x>2},P={x|x<3},则“x∈M或x∈P”是“x∈(M∩P)”的什么条件? (2)求使不等式4mx2-2mx-1<0恒成立的充要条件. |
最新试题
热门考点