(1)a·b=cosx·cos-sinx·sin=cos 2x. ∵a+b=, ∴|a+b|2=2+2 =2+2=2+2cos 2x=4cos2x. ∵x∈,∴cos x≥0.因此|a+b|=2cos x. (2)由(1)知f(x)=cos 2x-4λcos x=2cos2x-4λcos x-1, ∴f(x)=2(cos x-λ)2-1-2λ2,cos x∈[0,1]. ①当0<λ≤1时,当cos x=λ时, f(x)有最小值-1-2λ2=-,解得λ=. ②当λ>1时,当cos x=1时,f(x)有最小值1-4λ=-, λ= (舍去),综上可得λ= |