如图,和所在平面互相垂直,且,,E、F分别为AC、DC的中点.(1)求证:;(2)求二面角的正弦值.

如图,和所在平面互相垂直,且,,E、F分别为AC、DC的中点.(1)求证:;(2)求二面角的正弦值.

题型:不详难度:来源:
如图,所在平面互相垂直,且,E、F分别为AC、DC的中点.
(1)求证:
(2)求二面角的正弦值.

答案
(1)详见解析;(2) .
解析

试题分析:(1)(方法一)过E作EO⊥BC,垂足为O,连OF,由△ABC≌△DBC可证出△EOC≌△FOC,所以∠EOC=∠FOC=,即FO⊥BC,又EO⊥BC,因此BC⊥面EFO,即可证明EF⊥BC.(方法二)由题意,以B为坐标原点,在平面DBC内过B左垂直BC的直线为x轴,BC所在直线为y轴,在平面ABC内过B作垂直BC的直线为z轴,建立如图所示的空间直角坐标系.

易得,所以,因此,从而得;(2) (方法一)在图1中,过O作OG⊥BF,垂足为G,连EG,由平面ABC⊥平面BDC,从而EO⊥平面BDC,从而EO⊥面BDC,又OG⊥BF,由三垂线定理知EG垂直BF,因此∠EGO为二面角E-BF-C的平面角;在△EOC中,EO=EC=BC·cos30°=,由△BGO∽△BFC知,,因此tan∠EGO=,从而sin∠EGO=,即可求出二面角E-BF-C的正弦值.
(方法二)在图2中,平面BFC的一个法向量为,设平面BEF的法向量,又,由 得其中一个,设二面角E-BF-C的大小为,且由题意知为锐角,则,因此sin∠EGO=,即可求出二面角E-BF-C的正弦值.
(1)证明:
(方法一)过E作EO⊥BC,垂足为O,连OF,

由△ABC≌△DBC可证出△EOC≌△FOC,所以∠EOC=∠FOC=,即FO⊥BC,
又EO⊥BC,因此BC⊥面EFO,
又EF面EFO,所以EF⊥BC.
(方法二)由题意,以B为坐标原点,在平面DBC内过B左垂直BC的直线为x轴,BC所在直线为y轴,在平面ABC内过B作垂直BC的直线为z轴,建立如图所示的空间直角坐标系.

易得B(0,0,0),A(0,-1,),D(,-1,0),C(0,2,0),因而,所以,因此,从而,所以.
(2)(方法一)在图1中,过O作OG⊥BF,垂足为G,连EG,由平面ABC⊥平面BDC,从而EO⊥平面BDC,从而EO⊥面BDC,又OG⊥BF,由三垂线定理知EG垂直BF.
因此∠EGO为二面角E-BF-C的平面角;
在△EOC中,EO=EC=BC·cos30°=,由△BGO∽△BFC知,,因此tan∠EGO=,从而sin∠EGO=,即二面角E-BF-C的正弦值为.
(方法二)在图2中,平面BFC的一个法向量为,设平面BEF的法向量,又,由 得其中一个,设二面角E-BF-C的大小为,且由题意知为锐角,则,因此sin∠EGO=,即二面角E-BF-C的正弦值为.
举一反三
直三棱柱ABC-A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1
则BM与AN所成的角的余弦值为(  )
A.B.C.D.

题型:不详难度:| 查看答案
如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.
(1)证明:PB∥平面AEC;
(2)设二面角D-AE-C为60°,AP=1,AD=,求三棱锥E-ACD的体积.

题型:不详难度:| 查看答案
如图,在四棱锥中,,点为棱的中点.

(1)证明:
(2)求直线与平面所成角的正弦值;
(3)若为棱上一点,满足,求二面角的余弦值.
题型:不详难度:| 查看答案
如图,在四棱锥中,平面平面.
(1)证明:平面;
(2)求二面角的大小

题型:不详难度:| 查看答案
如图,四棱锥中,底面是以为中心的菱形,底面上一点,且.
(1)求的长;
(2)求二面角的正弦值.

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.