已知四棱锥的底面是平行四边形,,,面,且.若为中点,为线段上的点,且.(1)求证:平面;(2)求PC与平面PAD所成角的正弦值. 

已知四棱锥的底面是平行四边形,,,面,且.若为中点,为线段上的点,且.(1)求证:平面;(2)求PC与平面PAD所成角的正弦值. 

题型:不详难度:来源:
已知四棱锥的底面是平行四边形,,
.若中点,为线段上的点,且
(1)求证:平面
(2)求PC与平面PAD所成角的正弦值.

 
答案
(1)详见解析;(2)
解析

试题分析:(1)连结BD交AC于O,取PF中点G,连结OF,BG,EG,利用EO,EG分别为BG,FC的中位线,得到它们对应平行,进而得到平面BEG与平面ACF平行,再由面面平行的性质得到线面平行.
(2)要求线面角,需要先找到线面角的代表角,即过C点做面PAD的垂线,因为PA垂直于底面,所以过C作线段AD的垂线与AD交于H,则CH垂直于面PAD,所以角CPH即为线面角的代表角,要求该角的正弦值,就需要求出PC与CH,可以利用△PAC和△ACH为直角三角形通过勾股定理求出,进而得到线面角的正弦值.
解:(1)证明1:连接BD交AC于点O,取中点,连接

因为分别是的中点, 所以,      
又         ,所以             2分
因为分别是的中点,
所以,同理可得        4分
 所以,平面平面
又因为平面,故平面.      6分
证明2:作AH垂直BC交BC于H
建立如图的空间直角坐标系O-XYZ,

令AD=PA=2,则AB=1
所以
中点, 所以     2分
设面AFC的一个法向量,又
,
所以 
      4分
所以
所以  故平面.                              6分
(2)解1:因为,所以
过C作AD的垂线,垂足为H,则,所以平面PAD.
为PC与平面PAD所成的角.                  9分
,则
所以,即为所求.                 12分
解2:作AH垂直BC交BC于H,建立如图的空间直角坐标系O-XYZ,

令AD=PA=2,则AB=1,所以          8分
因为,所以面PCD的一个法向量为       10分
令PC与平面PAD所成的角为,则
故PC与平面PAD所成角的正弦值为.    12分.
举一反三
如图,底面是边长为2的菱形,且,以为底面分别作相同的正三棱锥,且.

(1)求证:平面
(2)求平面与平面所成锐角二面角的余弦值.
题型:不详难度:| 查看答案
如图所示的几何体中,面为正方形,面为等腰梯形,,且平面平面
(1)求与平面所成角的正弦值;
(2)线段上是否存在点,使平面平面
证明你的结论.

题型:不详难度:| 查看答案
如图,四边形ABCD是梯形,四边形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,,M是线段AE上的动点.
(1)试确定点M的位置,使AC∥平面DMF,并说明理由;
(2)在(1)的条件下,求平面DMF与平面ABCD所成锐二面角的余弦值.

题型:不详难度:| 查看答案
如图,在底面边长为1,侧棱长为2的正四棱柱中,P是侧棱上的一点,.
(1)试确定m,使直线AP与平面BDD1B1所成角为60º;
(2)在线段上是否存在一个定点,使得对任意的m,
⊥AP,并证明你的结论.

题型:不详难度:| 查看答案
在空间直角坐标系O-xyz中,平面OAB的一个法向量为n=(2,-2,1),已知点P(-1,3,2),则点P到平面OAB的距离d等于                  
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.