如图,底面是边长为2的菱形,且,以与为底面分别作相同的正三棱锥与,且.(1)求证:平面;(2)求平面与平面所成锐角二面角的余弦值.

如图,底面是边长为2的菱形,且,以与为底面分别作相同的正三棱锥与,且.(1)求证:平面;(2)求平面与平面所成锐角二面角的余弦值.

题型:不详难度:来源:
如图,底面是边长为2的菱形,且,以为底面分别作相同的正三棱锥,且.

(1)求证:平面
(2)求平面与平面所成锐角二面角的余弦值.
答案
(1)证明过程见解析;(2).
解析

试题分析:(1)作,作,易得四边形是平行四边形,所以.又,所以平面;
(2)以轴的正方向,以轴的正方向,在平面中过点作面的垂线为轴,建立空间直角坐标系求题,利用向量,求出平面和平面的法向量,则两平面的法向量的夹角即为所求角或为所求角的补角.
(1)作,作,因都是正三棱锥, 且分别为的中心,

且  .    
所以四边形是平行四边形,所以.
,所以平面
(2)如图,建立空间直角坐标系,
     

.…7分
为平面的法向量,


            
为平面的法向量,

            
                                          
设平面与平面所成锐二面角为,                    
  
所以,面与面所成锐二面角的余弦值为.          
举一反三
如图所示的几何体中,面为正方形,面为等腰梯形,,且平面平面
(1)求与平面所成角的正弦值;
(2)线段上是否存在点,使平面平面
证明你的结论.

题型:不详难度:| 查看答案
如图,四边形ABCD是梯形,四边形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,,M是线段AE上的动点.
(1)试确定点M的位置,使AC∥平面DMF,并说明理由;
(2)在(1)的条件下,求平面DMF与平面ABCD所成锐二面角的余弦值.

题型:不详难度:| 查看答案
如图,在底面边长为1,侧棱长为2的正四棱柱中,P是侧棱上的一点,.
(1)试确定m,使直线AP与平面BDD1B1所成角为60º;
(2)在线段上是否存在一个定点,使得对任意的m,
⊥AP,并证明你的结论.

题型:不详难度:| 查看答案
在空间直角坐标系O-xyz中,平面OAB的一个法向量为n=(2,-2,1),已知点P(-1,3,2),则点P到平面OAB的距离d等于                  
题型:不详难度:| 查看答案
如图,在四棱锥中,底面为矩形,侧棱底面的中点.
 
(1)求直线所成角的余弦值;
(2)在侧面内找一点,使,并求出点的距离.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.