如图,几何体中,为边长为的正方形,为直角梯形,,,,,.(1)求异面直线和所成角的大小;(2)求几何体的体积.

如图,几何体中,为边长为的正方形,为直角梯形,,,,,.(1)求异面直线和所成角的大小;(2)求几何体的体积.

题型:不详难度:来源:
如图,几何体中,为边长为的正方形,为直角梯形,

(1)求异面直线所成角的大小;
(2)求几何体的体积.
答案
(1) ;(2)
解析

试题分析:(1)求异面直线所成的角,一般根据定义,过异面直线中的一条上某一点作中一条直线的平行线,把异面直线所成的角化为相交直线所夹的锐角或直角,而这可能通过在三角形中求得,如果图形中有两两相互垂直且交于同一点的三条直线,那么我们可以建立空间直角坐标系,把异面直线所成的角转化为空间两向量的夹角,要注意异面直线所成的角的范围是,而向量的夹角范围是,解题时注意转化;(2)这个几何体我们要通过划分,把它变成几个可求体积的几何体,如三棱锥和四棱锥,这两个棱锥的体积都易求,故原几何体的体积也易求得.
试题解析:(1)解法一:在的延长线上延长至点使得,连接.
由题意得,平面
平面,∴,同理可证.


为平行四边形,
.
(或其补角)为异面直线
所成的角.                          3分
由平面几何知识及勾股定理可以得

中,由余弦定理得

∵ 异面直线的夹角范围为
∴ 异面直线所成的角为.                             7分
解法二:同解法一得所在直线相互垂直,故以为原点,所在直线
分别为轴建立如图所示的空间直角坐标系,                            2分

可得

.               4分
设向量夹角为,则

∵ 异面直线的夹角范围为
∴ 异面直线所成的角为.                 7分
(2)如图,连结,过的垂线,垂足为,则平面,且.   9分

      11分
.
∴ 几何体的体积为.  14分
举一反三
如图,三棱柱中,侧棱平面为等腰直角三角形,,且分别是的中点.

(1)求证:平面
(2)求锐二面角的余弦值.
题型:不详难度:| 查看答案
如图,已知的直径,点上两点,且为弧的中点.将沿直径折起,使两个半圆所在平面互相垂直(如图2).

(1)求证:
(2)在弧上是否存在点,使得平面?若存在,试指出点的位置;若不存在,请说明理由;
(3)求二面角的正弦值.
题型:不详难度:| 查看答案
如图,是以为直径的半圆上异于的点,矩形所在的平面垂直于半圆所在的平面,且.

(1)求证:
(2)若异面直线所成的角为,求平面与平面所成的锐二面角的余弦值.
题型:不详难度:| 查看答案
如图,在棱长为1的正方体ABCD-A1B1C1D1中,点E是棱AB上的动点.

(1)求证:DA1ED1
(2)若直线DA1与平面CED1成角为45o,求的值;
(3)写出点E到直线D1C距离的最大值及此时点E的位置(结论不要求证明).
题型:不详难度:| 查看答案
如图,四棱锥的底面是正方形,侧棱底面,过垂直点,作垂直点,平面点,且.

(1)设点上任一点,试求的最小值;
(2)求证:在以为直径的圆上;
(3)求平面与平面所成的锐二面角的余弦值.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.