如图,是以为直径的半圆上异于的点,矩形所在的平面垂直于半圆所在的平面,且。(1)求证:。(2)若异面直线和所成的角为,求平面和平面所成的锐二面角的余弦值。

如图,是以为直径的半圆上异于的点,矩形所在的平面垂直于半圆所在的平面,且。(1)求证:。(2)若异面直线和所成的角为,求平面和平面所成的锐二面角的余弦值。

题型:不详难度:来源:
如图,是以为直径的半圆上异于的点,矩形所在的平面垂直于半圆所在的平面,且

(1)求证:
(2)若异面直线所成的角为,求平面和平面所成的锐二面角的余弦值。
答案
(1)详见解析;(2)
解析

试题分析:(1)由面面垂直的性质定理可得,从而可得,又因为可证得平面,从而可证。(2)异面直线所成的角即为直线所成的角即。可用空间向量法求所求的二面角,先建系,得出点的坐标,和向量坐标,分别求平面和平面的法向量,用数量积公式求两法向量夹角的余弦值。但需注意两法向量所成的角与所求二面角相等或互补,需从图中观察得出。
试题解析:(1)∵平面垂直于圆所在的平面,两平面的交线为平面,∴垂直于圆所在的平面.又在圆所在的平面内,∴.∵是直角,∴,∴平面,∴.    6分
(2)如图,以点为坐标原点,所在的直线为轴,过点平行的直线为轴,建立空间直角坐标系.由异面直线所成的角为


,由题设可知,∴.设平面的一个法向量为
,取,得.
.又平面的一个法向量为,∴.
平面与平面所成的锐二面角的余弦值.             13分
举一反三
已知四棱锥的底面为直角梯形,底面,且的中点.
⑴求证:直线平面
⑵⑵若直线与平面所成的角为,求二面角的余弦值.
题型:不详难度:| 查看答案
如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,

(1)证明:平面PQC⊥平面DCQ;
(2)求二面角Q—BP—C的余弦值.
题型:不详难度:| 查看答案
在四棱锥中,侧面底面,,底面是直角梯形,,,,

(1)求证:平面;
(2)设为侧棱上一点,,试确定的值,使得二面角
题型:不详难度:| 查看答案
四棱锥P—ABCD的底面是边长为2的菱形,∠DAB=60°,侧棱,M、N两点分别在侧棱PB、PD上,.

(1)求证:PA⊥平面MNC。
(2)求平面NPC与平面MNC的夹角的余弦值.
题型:不详难度:| 查看答案
如图,将边长为2的正方形ABCD沿对角线BD折成一个直二面角,且EA⊥平面ABD,AE=.

(1)若,求证:AB∥平面CDE;
(2)求实数的值,使得二面角AECD的大小为60°.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.