四棱锥S-ABCD中,底面ABCD为平行四边形,侧面SBC底面ABCD.已知ABC=45o,AB=2,BC=2,SA=SB=.(1)证明:SABC;(2)求直线

四棱锥S-ABCD中,底面ABCD为平行四边形,侧面SBC底面ABCD.已知ABC=45o,AB=2,BC=2,SA=SB=.(1)证明:SABC;(2)求直线

题型:不详难度:来源:
四棱锥S-ABCD中,底面ABCD为平行四边形,侧面SBC底面ABCD.已知ABC=45o,AB=2,BC=2,SA=SB=

(1)证明:SABC;
(2)求直线SD与平面SAB所成角的正弦值.
答案
(1)详见解析,(2).
解析

试题分析:(1)已知条件为面面垂直,因此由面面垂直性质定理转化为线面垂直. 作,由侧面底面,得平面.证明线线垂直,有两个思路,一是通过线面垂直转化,二是利用空间向量计算.本题考虑到第二小题,采取空间向量方法. 利用空间向量以算代证,关键正确表示各点及对应向量的坐标,利用空间向量数量积进行论证.(2)利用空间向量求线面角,关键正确求出平面的一个法向量,利用两向量夹角的余弦值的绝对值等于线面角的正弦值的等量关系进行求解.
试题解析:(1)作,垂足为,连结
由侧面底面
平面   ..2
因为,所以   3
为等腰直角三角形,     4

如图,以为坐标原点,轴正向,建立直角坐标系.
   6
,所以    8
(2)设为平面SAB的法向量
  得     所以
令x=1                        10
              12
与平面所成的角与所成的角互余.
所以,直线与平面所成的角正弦值为           13
举一反三
已知四棱锥P—GBCD中(如图),PG⊥平面GBCD,GD∥BC,GD=BC,且BG⊥GC,GB=GC=2,E是BC的中点,PG=4

(1)求异面直线GE与PC所成角的余弦值;
(2)若F点是棱PC上一点,且,求的值.
题型:不详难度:| 查看答案
在正三棱柱ABC—A1B1C1中,D是AC的中点,AB1⊥BC1,则平面DBC1与平面CBC1所成的角为(  )
A.30° B.45°C.60° D.90°

题型:不详难度:| 查看答案
如图,平面平面,四边形为矩形,的中点,

(1)求证:
(2)若时,求二面角的余弦值.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.