如图,在四棱锥中,底面为平行四边形,底面,,,,,E在棱上,  (Ⅰ) 当时,求证: 平面;  (Ⅱ) 当二面角的大小为时,求直线与平面所成角的正弦值.

如图,在四棱锥中,底面为平行四边形,底面,,,,,E在棱上,  (Ⅰ) 当时,求证: 平面;  (Ⅱ) 当二面角的大小为时,求直线与平面所成角的正弦值.

题型:不详难度:来源:
如图,在四棱锥中,底面为平行四边形,底面,E在棱上,  (Ⅰ) 当时,求证: 平面;  (Ⅱ) 当二面角的大小为时,求直线与平面所成角的正弦值.
答案
解:在中,,
 又,以A为坐标原点,所在直线为 轴,轴,轴建立空间直角坐标系,则 , ,
 
(1)    

 
(2) ,底面

为二面角的平面角,即=,此时E为的中点

设平面的法向量为 计算可得


即直线与平面所成角的正弦值为
解析
本试题主要考查了对于空间中点线面位置关系的综合运用,关怀与线面垂直的判定定理的运用,以及二面角和线面角的知识的汇总试题,可以利用几何方法解,也可以通过建立空间直角坐标系解得 。
举一反三
如图,在正四棱柱中,的中点,.
(Ⅰ) 证明:∥平面
(Ⅱ)证明:平面.
题型:不详难度:| 查看答案
如图所示,己知三棱柱的侧棱与底面垂直,,MN分别是的中点,P点在上,且满足
(I)证明:
(II)当取何值时,直线PN与平面ABC所成的角最大?并求出该最大角的正切值;
(III)  在(II)条件下求P到平而AMN的距离.
题型:不详难度:| 查看答案
如图,在边长为4的菱形中,.点分别在边上,点与点不重合,.沿翻折到的位置,使平面平面
(1)求证:平面
(2)设点满足,试探究:当取得最小值时,直线与平面所成角的大小是否一定大于?并说明理由.
题型:不详难度:| 查看答案
如图,在正方体中,是棱的中点,在棱上.
,若二面角的余弦值为,求实数的值.
题型:不详难度:| 查看答案
已知四棱锥的底面为直角梯形,底面,且的中点。
(1)证明:面
(2)求所成的角;
(3)求面与面所成二面角的余弦值.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.