(本小题满分14分)如图,在四面体A−BCD中,AD^平面BCD,BC^CD,AD=2,BD=2.M是AD的中点.(1)证明:平面ABC平面ADC;(2)若ÐB

(本小题满分14分)如图,在四面体A−BCD中,AD^平面BCD,BC^CD,AD=2,BD=2.M是AD的中点.(1)证明:平面ABC平面ADC;(2)若ÐB

题型:不详难度:来源:
(本小题满分14分)如图,在四面体A−BCD中,AD^平面BCD,BC^CD,AD=2,BD=2.M是AD的中点.

(1)证明:平面ABC平面ADC;
(2)若ÐBDC=60°,求二面角C−BM−D的大小.
答案
(1)见解析(2)
解析

试题分析:(1)证明面面垂直几何法就要证线面垂直,要证线面垂直就要证线线垂直;线线、线面、面面垂直之间相互转化. 由题意知从点出发的三条件直线两两垂直,从而,又在平面内,所以可证得平面ABC平面ADC.证明面面垂直向量法可证法向量垂直,由题意知从点出发的三条件直线两两垂直,可以建立空间直角坐标系.
(2)求二面角可用两种向量法(面向量和法向量)或几何法,面向量法即在两个半平面内分别从顶点出发与棱垂直的两个向量所成的角.几何法(三垂线法)重点是找到二面角的平面角,①在几何体内找第三个平面与二面角的两个半平都垂直,交线所成角即为平面角;如果找不到可以退而求其次,找第三个平面与二面角的其中一个半平垂直.②与另外一个半交于点,过点作交线的垂线③过点作棱的垂线④连所得到的为二面角的平面角⑤在直角三角形求角.用法向量法求二面角不容易判断所求出的是二面角还是其补角,所以尽量不用它.
试题解析:
(1) 
     (4分)
         (6分)

(2)作CG^BD于点G,作GH^BM于点HG,连接CH.   (8分)
 
 




所以ÐCHG为二面角的平面角.      (10分)
在Rt△BCD中,
CD=BD=,CG=CD,BG=BC
在Rt△BDM中,HG==
在Rt△CHG中,tanÐCHG=
所以即二面角C-BM-D的大小为60°.     (14分)
举一反三
三棱锥P−ABC中,PA⊥平面ABC,AB⊥BC。

(1)证明:平面PAB⊥平面PBC;
(2)若PA=,PC与侧面APB所成角的余弦值为,PB与底面ABC成60°角,求二面角B―PC―A的大小。
题型:不详难度:| 查看答案
给出下列关于互不相同的直线和平面的四个命题:
①若,点,则不共面;
②若是异面直线,,且,则
③若,则
④若,则.
其中为假命题的是(   )
A.①B.②C.④D.③

题型:不详难度:| 查看答案
如图,长方体中点.

(1)求证:
(2)在棱上是否存在一点,使得平面?若存在,求的长;若不存在,说明理由;
(3)若二面角的大小为,求的长.
题型:不详难度:| 查看答案
如图,正方体中,点在侧面及其边界上运动,并且总是保持,则动点的轨迹是     (   )
A.线段
B.线段
C.中点与中点连成的线段
D.中点与中点连成的线段

题型:不详难度:| 查看答案
如图,已知四棱锥P-ABCD的底面为直角梯形,AD∥BC,∠BCD=900,PA=PB,PC=PD.

(I) 试判断直线CD与平面PAD是否垂直,并简述理由;
(II)求证:平面PAB⊥平面ABCD;
(III)如果CD=AD+BC,二面角P-CB-A等于600,求二面角P-CD-A的大小.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.