在计算“1×2+2×3+…n(n+1)”时,先改写第k项:k(k+1)=13[k(k+1)(k+2)-(k-1)k(k+1)],由此得1×2=13(1×2×3-

在计算“1×2+2×3+…n(n+1)”时,先改写第k项:k(k+1)=13[k(k+1)(k+2)-(k-1)k(k+1)],由此得1×2=13(1×2×3-

题型:不详难度:来源:
在计算“1×2+2×3+…n(n+1)”时,先改写第k项:
k(k+1)=
1
3
[k(k+1)(k+2)-(k-1)k(k+1)],由此得1×2=
1
3
(1×2×3-0×1×2),2×3=
1
3
(2×3×4-1×2×3),..
n(n+1)=
1
3
[n(n+1)(n+2)-(n-1)n(n+1)],相加,得1×2+2×3+…+n(n+1)=
1
3
n(n+1)(n+2)

(1)类比上述方法,请你计算“1×2×3+2×3×4+…+n(n+1)(n+2)”的结果;
(2)试用数学归纳法证明你得到的等式.
答案
(1)∵n(n+1)(n+2)=
1
4
[n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)]
∴1×2×3=
1
4
(1×2×3×4-0×1×2×3)
2×3×4=
1
4
(2×3×4×5-1×2×3×4)

n(n+1)(n+2)=
1
4
[n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)]
∴1×2×3+2×3×4+…+n(n+1)(n+2)=
1
4
[(1×2×3×4-0×1×2×3)+(2×3×4×5-1×2×3×4)+…+n×(n+1)×(n+2)×(n+3)-(n-1)×n×(n+1)×(n+2)=
1
4
n(n+1)(n+2)(n+3)
(2)利用数学归纳法证:1×2×3+2×3×4+…+n(n+1)(n+2)=
1
4
n(n+1)(n+2)(n+3)
①当n=1时,左边=1×2×3,右边=
1
4
×1×2×3×4
=1×2×3,左边=右边,等式成立.
②设当n=k(k∈N*)时,等式成立,
即1×2×3+2×3×4+…+k×(k+1)×(k+2)=
k(k+1)(k+2)(k+3)
4
.  
则当n=k+1时,
左边=1×2×3+2×3×4+…+k×(k+1)×(k+2)+(k+1)(k+2)(k+3)
=
k(k+1)(k+2)(k+3)
4
+(k+1)(k+2)(k+3)
=(k+1)(k+2)(k+3)(
k
4
+1)
=
(k+1)(k+2)(k+3)(K+4)
4

=
(k+1)(k+1+1)(k+1+2)(k+1+3)
4

∴n=k+1时,等式成立.
由①、②可知,原等式对于任意n∈N*成立.
举一反三
(理)已知△ABC三边a,b,c的长都是整数,且a≤b≤c,如果b=m(m∈N*),则这样的三角形共有______个(用m表示).
题型:安徽模拟难度:| 查看答案
下面几种是合情推理的是(  )
①已知两条直线平行同旁内角互补,如果∠A和∠B是两条平行直线的同旁内角,那么∠A+∠B=180°
②由平面三角形的性质,推测空间四面体的性质
③数列{an}中,an=2n-1推出a10=19
④数列1,0,1,0,…推测出每项公式an=
1
2
+(-1)n+1
1
2
A.①②B.②④C.②③D.③④
题型:不详难度:| 查看答案
“金导电、银导电、铜导电、铁导电,所以一切金属都导电”.此推理方法是(  )
A.完全归纳推理B.类比推理
C.归纳推理D.演绎推理
题型:不详难度:| 查看答案
在平面几何里,我们知道,正三角形的外接圆和内切圆的半径之比是2:1. 拓展到空间,研究正四面体(四个面均为全等的正三角形的四面体)的外接球和内切球的半径关系,可以得出的正确结论是:正四面体的外接球和内切球的半径之比是 ______.
题型:不详难度:| 查看答案
阅读下面一段文字:已知数列{an}的首项a1=1,如果当n≥2时,an-an-1=2,则易知通项an=2n-1,前n项的和Sn=n2.将此命题中的“等号”改为“大于号”,我们得到:数列{an}的首项a1=1,如果当n≥2时,an-an-1>2,那么an>2n-1,且Sn>n2.这种从“等”到“不等”的类比很有趣.由此还可以思考:要证Sn>n2,可以先证an>2n-1,而要证an>2n-1,只需证an-an-1>2(n≥2).结合以上思想方法,完成下题:
已知函数f(x)=x3+1,数列{an}满足a1=1,an+1=f(an),若数列{an}的前n项的和为Sn,求证:Sn≥2n-1.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.