(1)∵n(n+1)(n+2)=[n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)] ∴1×2×3=(1×2×3×4-0×1×2×3) 2×3×4=(2×3×4×5-1×2×3×4) … n(n+1)(n+2)=[n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)] ∴1×2×3+2×3×4+…+n(n+1)(n+2)=[(1×2×3×4-0×1×2×3)+(2×3×4×5-1×2×3×4)+…+n×(n+1)×(n+2)×(n+3)-(n-1)×n×(n+1)×(n+2)=n(n+1)(n+2)(n+3) (2)利用数学归纳法证:1×2×3+2×3×4+…+n(n+1)(n+2)=n(n+1)(n+2)(n+3) ①当n=1时,左边=1×2×3,右边=×1×2×3×4=1×2×3,左边=右边,等式成立. ②设当n=k(k∈N*)时,等式成立, 即1×2×3+2×3×4+…+k×(k+1)×(k+2)=. 则当n=k+1时, 左边=1×2×3+2×3×4+…+k×(k+1)×(k+2)+(k+1)(k+2)(k+3) =+(k+1)(k+2)(k+3) =(k+1)(k+2)(k+3)(+1) = =(k+1)(k+1+1)(k+1+2)(k+1+3) | 4 | . ∴n=k+1时,等式成立. 由①、②可知,原等式对于任意n∈N*成立. |