某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数。(1)sin213°+cos217°-sin13°cos17°(2)sin215°+cos215

某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数。(1)sin213°+cos217°-sin13°cos17°(2)sin215°+cos215

题型:高考真题难度:来源:
某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数。
(1)sin213°+cos217°-sin13°cos17°
(2)sin215°+cos215°-sin15°cos15°
(3)sin218°+cos212°-sin18°cos12°
(4)sin2(-18°)+cos248°-sin2(-18°)cos48°
(5)sin2(-25°)+cos255°-sin2(-25°)cos55°
(1)试从上述五个式子中选择一个,求出这个常数.
(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论。
答案
解:(1)选择(2),计算如下:sin215°+cos215°-sin15°cos15°=1-sin30°=
故这个常数为
(2)根据(1)的计算结果,将该同学的发现推广,得到三角恒等式
sin2α+cos2(30°-α)-sinαcos(30°-α)=
证明:sin2α+cos2(30°-α)-sinαcos(30°-α)=sin2α+-sinα(cos30°cosα+sin30°sinα)=sin2α+cos2α+sin2α+sinαcosα-sinαcosα-sin2α=sin2α+cos2α=
举一反三
观察下列不等式:…照此规律,第五个不等式为(    )。
题型:高考真题难度:| 查看答案
当n∈N*时,定义函数N(n)表示n的最大奇因数.如N(1)=1,N(2)=1,N(3)=3,N(4)=1,N(5)=5,N(10)=5,记S(n)=N(2 n﹣1)+N(2 n﹣1+1)+N(2 n﹣1+2)+…+N(2 n﹣1)(n∈N*)则S(n)=(    ).
题型:期末题难度:| 查看答案
观察下列各式:则72=49,73=343,74=2401,…,则72011的末两位数字为(    )
题型:同步题难度:| 查看答案

某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数。
(1)sin213°+cos217°-sin13°cos17°
(2)sin215°+cos215°-sin15°cos15°
(3)sin218°+cos212°-sin18°cos12°
(4)sin2(-18°)+cos248°-sin2(-18°)cos48°
(5)sin2(-25°)+cos255°-sin2(-25°)cos55°
(1)试从上述五个式子中选择一个,求出这个常数;
(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论。

题型:高考真题难度:| 查看答案
国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径,“开立圆术”相当于给出了已知球的体积V,求其直径d的一个近似公式d≈,人们还用过一些类似的近似公式.根据x=3.14159…..判断,下列近似公式中最精确的一个是[     ]
A.d≈
B.d≈
C.d≈
D.d≈
题型:高考真题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.