已知,,,映射.对于直线上任意一点,,若,我们就称为直线的“相关映射”,称为映射的“相关直线”.又知,则映射的“相关直线”有多少条(   )A.B.C.D.无数

已知,,,映射.对于直线上任意一点,,若,我们就称为直线的“相关映射”,称为映射的“相关直线”.又知,则映射的“相关直线”有多少条(   )A.B.C.D.无数

题型:不详难度:来源:
已知,映射.对于直线上任意一点,若,我们就称为直线的“相关映射”,称为映射的“相关直线”.又知
,则映射的“相关直线”有多少条(   )
A.B.C.D.无数

答案
B
解析

试题分析:当直线的斜率存在时,不放设直线的方程为
设点的坐标为,且,则点的坐标为
由于点在直线上,则有,即
因此有,解得
当直线的斜率不存在时,设直线的方程为,在此直线上任取一点,则点
由于点也在直线上,因此有(非定值),此时,直线不存在.
综上所述,映射的“相关直线”为,有两条,故选B.
举一反三
已知函数常数)满足.
(1)求出的值,并就常数的不同取值讨论函数奇偶性;
(2)若在区间上单调递减,求的最小值;
(3)在(2)的条件下,当取最小值时,证明:恰有一个零点且存在递增的正整数数列,使得成立.
题型:不详难度:| 查看答案
下图揭示了一个由区间到实数集上的对应过程:区间内的任意实数与数轴上的线段(不包括端点)上的点一一对应(图一),将线段围成一个圆,使两端恰好重合(图二),再将这个圆放在平面直角坐标系中,使其圆心在轴上,点的坐标为(图三).图三中直线轴交于点,由此得到一个函数,则下列命题中正确的序号是                   (     )

是偶函数;
在其定义域上是增函数;
的图像关于点对称.
A.(1)(3)(4)B.(1)(2)(3)
C.(1)(2)(4)D.(1)(2)(3)(4).

题型:不详难度:| 查看答案
某加油站拟造如图所示的铁皮储油罐(不计厚度,长度单位:米),其中储油罐的中间为圆柱形,左右两端均为半球形,为圆柱的高,为球的半径,).假设该储油罐的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为千元,半球形部分每平方米建造费用为3千元.设该储油罐的建造费用为千元.
(1)写出关于的函数表达式,并求该函数的定义域;
(2)求该储油罐的建造费用最小时的的值.

题型:不详难度:| 查看答案
已知.
(1)当,时,若不等式恒成立,求的范围;
(2)试判断函数内零点的个数,并说明理由.
题型:不详难度:| 查看答案
(本题满分14分)本题共有2个小题,第1小题满分6分,第2个小题满分8分。
已知.
(1)当,时,若不等式恒成立,求的范围;
(2)试证函数内存在零点.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.