设函数f(x)=-x3+3x+2,若不等式f(3+2sin θ)<m对任意θ∈R恒成立,则实数m的取值范围为________.
题型:不详难度:来源:
设函数f(x)=-x3+3x+2,若不等式f(3+2sin θ)<m对任意θ∈R恒成立,则实数m的取值范围为________. |
答案
(4,+∞) |
解析
因为f′(x)=-3x2+3=-3(x-1)(x+1)≤0对x∈[1,+∞)恒成立,所以原函数在x∈[1,+∞)递减,而1≤3+2sin θ≤5,所以m>[f(3+2sin θ]max=f(1)=4. |
举一反三
函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为________. |
设函数f(x),g(x)的定义域分别为M,N,且M是N真子集,若对任意的x∈M,都有g(x)=f(x),则称g(x)是f(x)的“拓展函数”.已知函数f(x)=log2x,若g(x)是f(x)的“拓展函数”,且g(x)是偶函数,则符合条件的一个g(x)的解析式是________. |
“a=1”是“函数f(x)=在其定义域上为奇函数”的________条件.(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”) |
最新试题
热门考点