具有相同定义域D的函数和,,若对任意的,都有,则称和在D上是“密切函数”.给出定义域均为的四组函数:、①②③④其中,函数与在D上为“密切函数”的是_______

具有相同定义域D的函数和,,若对任意的,都有,则称和在D上是“密切函数”.给出定义域均为的四组函数:、①②③④其中,函数与在D上为“密切函数”的是_______

题型:不详难度:来源:
具有相同定义域D的函数和,,若对任意的,都有,则称在D上是“密切函数”.给出定义域均为的四组函数:、




其中,函数在D上为“密切函数”的是_______.
答案
①④
解析

试题分析:①f(x)=x2-x+1,g(x)=3x-2
设h(x)=f(x)-g(x)=x2-4x+3
h(x)在[1,2]上单调减,在[2,3]上单调增
∴h(x)的最大值为0,最小值为-1
∴对任意的x∈[1,3],都有|f(x)-g(x)|≤1,符合定义
②f(x)=x3+x,g(x)=3x2+x-1
设h(x)=f(x)-g(x)=x3+3x2+1
h′(x)=3x2+6x,x∈[1,3],h′(x)>0
h(x)在[1,3]上单调增
∴h(x)的最大值为55,最小值为5,
∴对任意的x∈[1,3],|f(x)-g(x)|≤1不成立,不符合定义
③f(x)=log2(x+1),g(x)=3-x
设h(x)=f(x)-g(x)=log2(x+1)+x-3
h(x)在[1,3]上单调增
∴h(x)的最大值为2,最小值为-1,
∴对任意的x∈[1,3],|f(x)-g(x)|≤1不成立,不符合定义

设h(x)=f(x)-g(x)=-()=
∵x∈[1,3],∴
∴对任意的x∈[1,3],都有|f(x)-g(x)|≤1,符合定义
故答案为:①④
点评:解决该试题的关键是对照新定义,构造新函数h(x)=f(x)-g(x),利用导数的方法确定函数的单调性,从而确定函数的值域,利用若对任意的x∈D,都有|f(x)-g(x)|≤1,则称f(x)和g(x)在D上是“密切函数”,即可得到结论
举一反三
已知定义在(-∞,—1)∪(1,+∞)上的奇函数满足:①f(3)=1;②对任意的x>2, 均有f(x)>0,③对任意的x>0,y>0.均有f(x+1)+f(y+1)=f(xy+1) 
⑴试求f(2)的值;
⑵证明f(x)在(1,+∞)上单调递增;
⑶是否存在实数a,使得f(cos2θ+asinθ)<3对任意的θ(0,π)恒成立?若存在,请求出a的范围;若不存在,请说明理由.
题型:不详难度:| 查看答案
已知上是增函数,那么实数a的取值范围是(   )
A.(1,+B.(C.D.(1,3)

题型:不详难度:| 查看答案
已知,则的值等于   
题型:不详难度:| 查看答案
在下列图象中,二次函数的图象只可能是   (   )
题型:不详难度:| 查看答案
若函数是奇函数,则a+b=         
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.