已知函数是定义在上的偶函数,当时,.(1)求当时的解析式;(2)试确定函数的单调区间,并证明你的结论;(3)若且,证明:.

已知函数是定义在上的偶函数,当时,.(1)求当时的解析式;(2)试确定函数的单调区间,并证明你的结论;(3)若且,证明:.

题型:不详难度:来源:
已知函数是定义在上的偶函数,当时,
(1)求当的解析式;
(2)试确定函数的单调区间,并证明你的结论;
(3)若,证明:.
答案

(1) 
(2)函数上为减函数,在上为增函数.
(3)证明见解析
解析

(1)若,则, ∵函数是定义在上的偶函数,
    ----------3分
(2)当时,.   --------------6分
显然当时,;当时,,又处连续,
∴函数上为减函数,在上为增函数.   -----------8分
(3)∵函数上为增函数,且
∴当时,有,------------------10分
又当时,得,即
  即得.    ----------12分
举一反三
已知函数是定义在上的单调奇函数, 且.
(Ⅰ)求证函数上的单调减函数;
(Ⅱ) 解不等式.
题型:不详难度:| 查看答案
定义符号函数   ,则不等式:的解集是          .
题型:不详难度:| 查看答案
如果函数,那么
题型:不详难度:| 查看答案
已知二次函数f(x)=ax2+bx,且f(x+1)为偶函数,定义:满足f(x)=x的实数x称为函数f(x)的不动点,若函数f(x)有且仅有一个不动点,
(1)求f(x)的解析式;
(2)若函数g(x)= f(x)++x2在 (0,]上是单调减函数,求实数k的取值范围;
(3)在(2)的条件下,是否存在区间[m,n](m<n),使得f(x)在区间[m,n]上的值域为[km,kn]?若存在,请求出区间[m,n];若不存在,请说明理由。
题型:不详难度:| 查看答案
若存在实常数,使得函数对其定义域上的任意实数分别满足:,则称直线的“隔离直线”.已知,(其中为自然对数的底数),根据你的数学知识,推断间的隔离直线方程为                 .
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.