(11分)探究:是否存在常数a、b、c使得等式1·22+2·32+…+n(n+1)2=(an2+bn+c)对对一切正自然数n均成立,若存在求出a、b、c,并证明

(11分)探究:是否存在常数a、b、c使得等式1·22+2·32+…+n(n+1)2=(an2+bn+c)对对一切正自然数n均成立,若存在求出a、b、c,并证明

题型:不详难度:来源:
(11分)探究:是否存在常数abc使得等式1·22+2·32+…+n(n+1)2=(an2+bn+c)
对对一切正自然数n均成立,若存在求出abc,并证明;若不存在,请说明理由.
答案
设存在abc使题设的等式成立,这时令n=1,2,3,有
证明见解析。
解析
先令n=1,2,3建立关于a,b,c的三个方程,解出a,b,c的值.然后再证明时,也成立.由于是与n有关的证明问题,可以考虑用数学归纳法进行证明.
设存在abc使题设的等式成立,这时令n=1,2,3,有
于是,对n=1,2,3下面等式成立1·22+2·32+…+n(n+1)2=
Sn=1·22+2·32+…+n(n+1)2n=k时上式成立,即Sk= (3k2+11k+10)
那么Sk+1=Sk+(k+1)(k+2)2=(k+2)(3k+5)+(k+1)(k+2)2= (3k2+5k+12k+24)
=[3(k+1)2+11(k+1)+10]也就是说,等式对n=k+1也成立.
综上所述,当a=3,b=11,c=10时,题设对一切正自然数n均成立.
举一反三
(本小题满分14分)
已知数列中,,, 为该数列的前项和,且.
(1)求数列的通项公式;
(2)若不等式对一切正整数都成立,求正整数的最大值,并证明结论.
题型:不详难度:| 查看答案
用数学归纳法证明:1+++时,在第二步证明从n=k到n=k+1成立时,左边增加的项数是(   )
A.B.C.D.

题型:不详难度:| 查看答案
(本题满分12分)
某班一信息奥赛同学编了下列运算程序,将数据输入满足如下性质:
①输入1时,输出结果是
②输入整数时,输出结果是将前一结果先乘以3n-5,再除以3n+1.
(1)  求f(2),f(3),f(4);
(2) 试由(1)推测f(n)(其中)的表达式,并给出证明.
题型:不详难度:| 查看答案
用数学归纳法证明不等式的过程中,
递推到时的不等式左边(    )
A.增加了
B.增加了
C.增加了“”,又减少了“
D.增加了,减少了“

题型:不详难度:| 查看答案
对于不等式某同学应用数学归纳法证明的过程如下:
(1)当时,,不等式成立
(2)假设时,不等式成立,即
那么时,

不等式成立根据(1)(2)可知,对于一切正整数不等式都成立。上述证明方法(    )
A.过程全部正确B.验证不正确
C.归纳假设不正确D.从的推理不正确

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.