用数学归纳法证明不等式1+12+14+…+12n-1>12764成立,起始值至少应取为(  )A.7B.8C.9D.10

用数学归纳法证明不等式1+12+14+…+12n-1>12764成立,起始值至少应取为(  )A.7B.8C.9D.10

题型:不详难度:来源:
用数学归纳法证明不等式1+
1
2
+
1
4
+…+
1
2n-1
127
64
成立,起始值至少应取为(  )
A.7B.8C.9D.10
答案
左边的和为
1-
1
2n
1-
1
2
=2-21-n
,当n=8时,和为2-2-7
127
64

故选B.
举一反三
已知α1,α2,…αn∈(0,π),n是大于1的正整数,求证:|sin(α12+…+αn)|<sinα1+sinα2+…+sinαn
题型:沈阳模拟难度:| 查看答案
用数学归纳法证明“1+
1
2
+
1
3
+…+
1
2n-1
<n(n∈N*,n>1)”时,由n=k(k>1)不等式成立,推证n=k+1时,左边应增加的项数是(  )
A.2k-1B.2k-1C.2kD.2k+1
题型:不详难度:| 查看答案
已知f(n)=1+
1
2
+
1
3
+L+
1
n
(n∈N*),用数学归纳法证明f(2n)>
n
2
时,f(2k+1)-f(2k)等于______.
题型:不详难度:| 查看答案
用数学归纳法证明“(n+1)(n+2)…(n+n)=2n•1•2•…•(2n-1)”(n∈N+)时,从“n=k到n=k+1”时,左边应增添的式子是______.
题型:不详难度:| 查看答案
用数学归纳法证明:
1
n+1
+
1
n+2
+
1
n+3
+…+
1
n+n
11
24
  (n∈N,n≥1)
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.