设函数y=f(x)存在反函数y=f-1(x),且函数y=x-f(x)的图象过点(1,2),则函数y=f-1(x)-x的图象一定过点_.
题目
设函数y=f(x)存在反函数y=f-1(x),且函数y=x-f(x)的图象过点(1,2),则函数y=f-1(x)-x的图象一定过点______.
答案
解析:由函数y=x-f(x)的图象过点(1,2)得:f(1)=-1,
即函数y=f(x)过点(1,-1),
则其反函数过点(-1,1),
所以函数y=f-1(x)-x的图象一定过点(-1,2).
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点