已知△ABC中,(tanA+1)(tanB+1)=2,AB=2,求:(1)角C的度数;(2)求三角形ABC面积的最大值.
题目
已知△ABC中,(tanA+1)(tanB+1)=2,AB=2,求:
(1)角C的度数;
(2)求三角形ABC面积的最大值.
答案
记角A、角B、角C的对边分别为a、b、c
(1)tanA+tanB+tanAtanB+1=2,即tanA+tanB=1-tanAtanB,
∵1-tanAtanB≠0,
∴tan(A+B)=
=1,
即tanC=tan[π-(A+B)]=-tan(A+B)=-1,
∵C∈(0,π),∴C=
;
(2)由余弦定理a
2+b
2-2abcosC=c
2得:
a
2+b
2+2×
ab=4,即a
2+b
2+
ab=4,
而4-
ab=a
2+b
2≥2ab,即ab≤4-2
,
所以S
△ABC=
absinC=
ab≤
(4-2
)=
-1.
(1)把已知的等式(tanA+1)(tanB+1)=2变形,利用两角和的正切函数公式即可求出tan(A+B)的值,利用三角形的内角和定理及诱导公式即可求出tanC的值,根据C的范围,利用特殊角的三角函数值即可求出C的度数;
(2)由AB即c的值和cosC的值,利用余弦定理即可表示出关于a与b的关系式,利用基本不等式求出ab的最大值,然后利用三角形的面积公式,由求出的ab的最大值和sinC的值即可求出三角形ABC面积的最大值.
两角和与差的正切函数;解三角形.
此题考查学生灵活运用两角和的正切函数公式及诱导公式化简求值,灵活运用余弦定理及三角形的面积公式化简求值,会利用基本不等式求函数的最大值,是一道中档题.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点
- 已知圆C1:x2+y2+2x+3y+1=0,圆C2:x2+y2+4x+3y=0,则圆C1与圆C2的位置关系是 _ .
- 君问归期未有期,巴山夜雨涨秋池,秋字在诗中起什么作用
- 光电效应里,饱和光电流
- 上了初二时间紧了,怎么抽时间读书呢?请有经验者回答
- 一份报纸,3张3张地数,余1张;5张5张地数,余2张;7张7张地数余2张.一共有几份报纸?
- 小强测量大树的高度,测出这棵树的影长4.5m,自己的影长5m,他的身高1.58 m 求大树高度
- 点O是△ABC内的一点,点D、E、F、G分别是线段AB、OB、OC、AC的中点
- 草履虫是单细胞生物体,而鱼类是多细胞生物体,他们完成各自的生命活动有什么不同?
- (1)由抛物线y^2=x与直线x=2所围成的图形的面积是
- 小林有含盐百分之十六的盐水40kg,可他需要百分之二十的盐水,蒸发掉( )kg水后可将浓度提高到百分之二十?我要算式,好的,快的给10财富值.