关于x的不等式-2≤x²+ax+b≤1,(a∈R,b∈R,a≠0)恰好有一解,则b+(1/a²)的最小值为

关于x的不等式-2≤x²+ax+b≤1,(a∈R,b∈R,a≠0)恰好有一解,则b+(1/a²)的最小值为

题目
关于x的不等式-2≤x²+ax+b≤1,(a∈R,b∈R,a≠0)恰好有一解,则b+(1/a²)的最小值为
答案
不等式-2≤x²+ax+b≤1恰好有一解
那么只有x²+ax+b=1即x²+ax+b-1=0
有2个相等的实数根
∴Δ=a²-4(b-1)=0
∴b=a²/4+1
∴b+(1/a²)=a²/4+1/a²+1
根据均值定理
a²/4+1/a²≥2√(a²/4*1/a²)=1
∴a²/4+1/a²+1≥2
即b+(1/a²)的最小值为2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.