平面直角坐标系中
设A(X1,Y1)、B(X2,Y2),则,或者∣AB∣=∣X1-X2∣secα=∣Y1-Y2∣/sinα,其中α为直线AB的倾斜角,k为直线AB的斜率。
三维坐标系中
设A(x1,y1,z1),B(x2,y2,z2)
|AB|=√[(x2-x1)^2+(y2-y1)^2+(z2-z1)^2]
证明很简单,套用两次勾股定理。两次勾股定理的套用:第一次套用勾股定理:在三维坐标中,首先计算两点在平面坐标中的距离,也就是X,Y轴上的平面距离,这时第一次套用勾股定理计算出两点间的平面距离。
第二次套用勾股定理:已经计算出两点在X,Y轴上的平面距离,再计算出两点在Z轴上的垂直距离:Z1-Z2。这时就可以再次套用勾股定理计算出两点在三维坐标中的距离了。即:|AB|=√[(x2-x1)^2+(y2-y1)^2+(z2-z1)^2]
已知A(-1,3),B(2,2),C(-3,-1)。
求:(1)△ABC的面积;
(2)∠BAC的大小。
© 2017-2019 超级试练试题库,All Rights Reserved.