求使2n-1为7的倍数的所有正整数n.
题型:解答题难度:一般来源:不详
求使2n-1为7的倍数的所有正整数n. |
答案
因为23=8≡1(mod7),所以对n按模3进行分类讨论. (1)若n=3k,则 2n-1=(23)k-1=8k-1≡1k-1=0(mod7); (2)若n=3k+1,则 2n-1=2•(23)k-1=2•8k-1 ≡2•1k-1=1(mod7); (3)若n=3k+2,则 2n-1=22•(23)k-1=4•8k-1 ≡4•1k-1=3(mod7). 所以,当且仅当3|n时,2n-1为7的倍数. |
举一反三
对任意的自然数n,证明A=2903n-803n-464n+261n能被1897整除. |
把1,2,3…,127,128这128个数任意排列为a1,a2,…,a128,计算出|a1-a2|,|a3-a4|,…,|a127-a128|,再将这64个数任意排列为b1,b2,…,b64,计算|b1-b2|,|b3-b4|,…,|b63-b64|.如此继续下去,最后得到一个数x,问x是奇数还是偶数? |
已知两个自然数的积与和之差恰等于它们的最大公约数与最小公倍数之和,求这样的自然数. |
已知正整数n大于30,且使得4n-1整除2002n,求n的值. |
最新试题
热门考点