试题分析:(1)解一元二次方程,求得OA、OB的长,证△AOC∽△COB,推出OC2=OA•OB,即可得出答案。 解x2﹣25x+144=0得x=9或x=16, ∵OA、OB的长分别是一元二次方程x2﹣25x+144=0的两个根(OA<OB), ∴OA=9,OB=16。 在Rt△AOC中,∠CAB+∠ACO=90°, 在Rt△ABC中,∠CAB+∠CBA=90°, ∴∠ACO=∠CBA。 ∵∠AOC=∠COB=90°,∴△AOC∽△COB。∴OC2=OA•OB。∴OC=12, ∴C(0,12)。 (2)应用相似三角形求得点D 的坐标,应用待定系数法即可求得直线AD的解析式。 在Rt△AOC和Rt△BOC中,∵OA=9,OC=12,OB=16,∴AC=15,BC=20。 ∵DE⊥AB,∴∠ACD=∠AED=90°。 又∵AD平分∠CAB,AD=AD,∴△ACD≌△AED。∴AE=AC=15。 ∴OE=AE﹣OA=15﹣9=6,BE=10。 ∵∠DBE=∠ABC,∠DEB=∠ACB=90°,∴△BDE∽△BAC。 ∴,即,解得。 ∴D(6,)。 设直线AD的解析式是y=kx+b, 将A(﹣9,0)和D(6,)代入得: ,解得。 ∴直线AD的解析式是:。 (3)存在点M,使得C、B、N、M为顶点的四边形是正方形。 ① 以BC为对角线时,作BC的垂直平分线交BC于Q,交x轴于F,在直线FQ上取一点M,使∠CMB=90°,则符合此条件的点有两个,
BQ=CQ=BC=10, ∵∠BQF=∠BOC=90°,∠QBF=∠CBO, ∴△BQF∽△BOC。∴。 ∵BQ=10,OB=16,BC=20,∴BF=。 ∴OF=16﹣=。∴F(,0)。 ∵OC=12,OB=16,Q为BC中点,∴Q(8,6)。 设直线QF的解析式是y=ax+c, 代入得:,解得。 ∴直线FQ的解析式是:。 设M的坐标是(x,), 根据CM=BM和勾股定理得:(x﹣0)2+(﹣12)2=(x﹣16)2+(﹣0)2, 解得x1=14,x2=2。 ∴M的坐标是(14,14),(2,﹣2)。 ②以BC为一边时,过B作BM3⊥BC,且BM3=BC=20,过M3Q⊥OB于Q,还有一点M4,CM4=BC=20,CM4⊥BC,
则∠COB=∠M3B=∠CBM3=90°。 ∴∠BCO+∠CBO=90°, ∠CBO+∠M3BQ=90°。 ∴∠BCO=∠M3BQ。 ∵在△BCO和△M3BQ中, , ∴△BCO≌△M3BQ(AAS)。 ∴BQ=CO=12,QM3=OB=16, OQ=16+12=28, ∴M3的坐标是(28,16)。 同法可求出CT=OB=16,M4T=OC=12,OT=16﹣12=4, ∴M4的坐标是(﹣12,﹣4)。 综上所述,存在点M,使得C、B、N、M为顶点的四边形是正方形, 点M的坐标是(28,16)或(14,14)或(﹣12,﹣4)或(2,﹣2)。 |