方程x2+2ax+a-4=0恒有相异两实根,若方程x2+2ax+k=0也有相异两实根,且其两根介于上面方程的两根之间,则k的取值范围是______.

方程x2+2ax+a-4=0恒有相异两实根,若方程x2+2ax+k=0也有相异两实根,且其两根介于上面方程的两根之间,则k的取值范围是______.

题型:填空题难度:一般来源:不详
方程x2+2ax+a-4=0恒有相异两实根,若方程x2+2ax+k=0也有相异两实根,且其两根介于上面方程的两根之间,则k的取值范围是______.
答案
∵方程x2+2ax+a-4=0恒有相异两实根,
∴△>0,而△=4a2-4(a-4)=4(a2-a+4)=4[(a-
1
2
2+
15
4
],
又∵方程x2+2ax+k=0有相异两实根,
∴△′=4a2-4k>0,即k<a2
对于二次函数y1=x2+2ax+a-4,y2=x2+2ax+k,它们的对称轴相同,且与x轴都有两个不同得交点,要让y2与x轴两个交点都在y1与x轴两个交点之间,则要满足y2与y轴的交点在y1与y轴的交点上方,如图,

则有k>a-4,
所以k的取值范围是 a-4<k<a2
故答案为a-4<k<a2
举一反三
已知关于x的方程kx2+(1-k)x-1=0,下列说法正确的是(  )
A.当k=0时,方程无解
B.当k=1时,方程有一个实数解
C.当k=-1时,方程有两个相等的实数解
D.当k≠0时,方程总有两个不相等的实数解.
题型:单选题难度:一般| 查看答案
关于x的一元二次方程x2+4x+k=0有实数解,则k的取值范围是(  )
A.k≥4B.k≤4C.k>4D.k=4
题型:单选题难度:简单| 查看答案
已知关于x的方程x2-(2k+1)x+4(k-
1
2
)=0.
(1)求证:无论k取什么实数值,这个方程总有实根.
(2)若等腰△ABC的一边长a=4,另两边b、c恰好是这个方程的两根,求△ABC的周长.
题型:不详难度:| 查看答案
不解方程,试判断方程2x2-3x+1=0的根的情况是(  )
A.有两个不相等的实数根B.没有实数根
C.有两个相等的实数根D.只有一个实数根
题型:单选题难度:一般| 查看答案
考虑方程(x2-10x+a)2=b①
(1)若a=24,求一个实数b,使得恰有3个不同的实数x满足①式.
(2)若a≥25,是否存在实数b,使得恰有3个不同的实数x满足①式?说明你的结论.
题型:解答题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.