我们知道,对于实系数方程ax2+bx+c=0(a≠0),若x1、x2是其两实数根,则有ax2+bx+c=a(x-x1)(x-x2)=ax2-a(x1+x2)x+

我们知道,对于实系数方程ax2+bx+c=0(a≠0),若x1、x2是其两实数根,则有ax2+bx+c=a(x-x1)(x-x2)=ax2-a(x1+x2)x+

题型:不详难度:来源:
我们知道,对于实系数方程ax2+bx+c=0(a≠0),若x1、x2是其两实数根,则有ax2+bx+c=a(x-x1)(x-x2)=ax2-a(x1+x2)x+ax1x2,故有b=-a(x1+x2),c=ax1x2,即得x1+x2=-
b
a
,x1x2=
c
a

根据上述内容,若实系数方程ax3+bx2+cx+d=0(a≠0)的三个实数根分别是x1、x2、x3,则x1+x2+x3=______; x1x2x3=______.
答案
根据题意可得
ax3+bx2+cx+d
=a(x-x1)(x-x2)(x-x3
=a(x2-xx1-xx2+x1x2)(x-x3
=a(x3-x2x1-x2x2+xx1x2-x2x3+xx1x3+xx2x3-x1x2x3
=ax3-a(x1+x2+x3)x2+a(x1x2+x1x3+x2x3)x-ax1x2x3
∴b=-a(x1+x2+x3),d=-ax1x2x3
即得x1+x2+x3=-
b
a
,x1x2x3=-
d
a

故答案为:-
b
a
,-
d
a
举一反三
设x1、x2是方程2x2+3x-1=0的两实数根,则x1+x2=______,x1•x2=______.
题型:南长区二模难度:| 查看答案
下列方程中,两实数根之和为4的是(  )
A.3x2-4x+1=0B.x2-4x+5=0
C.2x2-8x-1=0D.
1
2
x2+2x-3=0
题型:闸北区二模难度:| 查看答案
已知一元二次方程x2-x+1-m=0的两个实根α,β满足|α|+|β|≤5,则实数m的取值范围是______.
题型:填空题难度:一般| 查看答案
若关于x的方程2x2-kx-3=0的两根是x1、x2,则x1•x2=______.
题型:填空题难度:一般| 查看答案
方程x2-
15
4
x+a3=0的根中,一个根是另一个根的平方,则a=______.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.