图①、图②都是4×4的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在每个网格中标注了5个格点.按下列要求画图:(1)在图①中以格点为顶点画
题型:不详难度:来源:
图①、图②都是4×4的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在每个网格中标注了5个格点.按下列要求画图: (1)在图①中以格点为顶点画一个等腰三角形,使其内部已标注的格点只有3个;
(2)在图②中,以格点为顶点,画一个正方形,使其内部已标注的格点只有3个,且边长为无理数.
|
答案
解:(1)部分画法如图所示:
(2)部分画法如图所示:
|
解析
试题分析:根据要求画图即可: (1)至少要有两条边相等; (2)四条边相等,且为无理数,四个角都是直角。 |
举一反三
如图①,在平面直角坐标系中,点P(0,m2)(m>0)在y轴正半轴上,过点P作平行于x轴的直线,分别交抛物线C1:于点A、B,交抛物线C2:于点C、D.原点O关于直线AB的对称点为点Q,分别连接OA,OB,QC和QD. 【猜想与证明】 填表:
m
| 1
| 2
| 3
|
|
|
|
| 由上表猜想:对任意m(m>0)均有= .请证明你的猜想. 【探究与应用】 (1)利用上面的结论,可得△AOB与△CQD面积比为 ; (2)当△AOB和△CQD中有一个是等腰直角三角形时,求△CQD与△AOB面积之差; 【联想与拓展】 如图②过点A作y轴的平行线交抛物线C2于点E,过点D作y轴的平行线交抛物线C1于点F.在y轴上任取一点M,连接MA、ME、MD和MF,则△MAE与△MDF面积的比值为 .
|
函数中自变量x的取值范围是 . |
在函数中,自变量x的取值范围是 |
如图所示:边长分别为1和2的两个正方形,其中一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形内去掉小正方形后的面积为s,那么s与t的大致图象应为
|
如图,蜂巢的横截面由正六边形组成,且能无限无缝隙拼接,称横截面图形由全等正多边形组成,且能无限无缝隙拼接的多边形具有同形结构. 若已知具有同形结构的正n边形的每个内角度数为α,满足:360=kα(k为正整数),多边形外角和为360°,则k关于边数n的函数是 (写出n的取值范围)
|
最新试题
热门考点