点P(x,y)在第一象限,且x+y=10,点A的坐标为(8,0),设原点为O,△OPA的面积为S.(1)求S与x的函数关系式,写出x的取值范围,画出这个函数图象

点P(x,y)在第一象限,且x+y=10,点A的坐标为(8,0),设原点为O,△OPA的面积为S.(1)求S与x的函数关系式,写出x的取值范围,画出这个函数图象

题型:不详难度:来源:
点P(x,y)在第一象限,且x+y=10,点A的坐标为(8,0),设原点为O,△OPA的面积为S.
(1)求S与x的函数关系式,写出x的取值范围,画出这个函数图象;
(2)当S=12时,求点P的坐标;
(3)△OPA的面积能大于40吗?为什么?
答案
(1)S=40﹣4x, 0<x<10,图象见解析;(2)(7,3);(3)△OPA的面积不能大于40,证明见解析.
解析

试题分析:(1)根据三角形的面积公式△OPA的面积=OA•|yp|列式,即可用含x的解析式表示S=40﹣4x,然后根据S>0及已知条件,可求出x的取值范围,根据一次函数的性质和x的取值范围可画出函数S的图象;(2)将S=12代入求得的函数的解析式,然后求得x、y的值,从而求得点P的坐标;(3)根据一次函数的性质及自变量的取值范围即可判断.
试题解析:(1)∵A和P点的坐标分别是(8,0)、(x,y),
∴△OPA的面积=OA•|yp|,
∴S=×8×|y|=4y,
∵x+y=10,
∴y=10﹣x,
∴S=4(10﹣x)=40﹣4x,
∵S=﹣4x+40>0,
x<10,
又∵点P在第一象限,
∴x>0,
即x的范围为:0<x<10,
∵S=﹣4x+40,S是x的一次函数,
∴函数图象经过点(10,0),(0,40),
所画图象如下:

(2)∵S=﹣4x+40,
∴当S=12时,12=﹣4x+40,
解得:x=7,y=3,
即当点P的坐标为(7,3);
(3)△OPA的面积不能大于40.理由如下:
∵S=﹣4x+40,﹣4<0,
∴S随x的增大而减小,
又∵x=0时,S=40,
∴当0<x<10,S<40,
即△OPA的面积不能大于40.
举一反三
如图①,在平面直角坐标系中,平行四边形在第一象限,直线从原点出发沿轴正方向平移,被平行四边形截得的线段的长度与平移的距离的函数图象如图②所示,那么平行四边形的面积为          

题型:不详难度:| 查看答案
已知:一次函数的图像平行于直线,且经过点(0,-4),那么这个一次函数的解析式为         .
题型:不详难度:| 查看答案
B岛位于自然环境优美的西沙群岛,盛产多种鱼类.A港、B岛、C港依次在同一条直线上,一渔船从A港出发经由B岛向C港航行,航行2小时时发现鱼群,于是渔船匀速缓慢向B港方向前行打渔.在渔船出发一小时后,一艘快艇由C港出发,经由B岛前往A港运送物资.当快艇到达B岛时渔船恰好打渔结束,渔船又以原速经由B岛到达C港.下面是两船距B港的距离y(海里)与渔船航行时间x(小时)的函数图象,结合图象回答下列问题:

(1)请直接写出m,a的值.
(2)求出线段MN的解析式,并写出自变量的取值范围.
(3)从渔船出发后第几小时两船相距10海里?
题型:不详难度:| 查看答案
在国道202公路改建工程中,某路段长4000米,由甲乙两个工程队拟在30天内(含30天)合作完成.已知两个工程队各有10名工人(设甲乙两个工程队的工人全部参与生产,甲工程队每天的工作量相同,乙工程队每人每天的工作量相同).甲工程队1天、乙工程2天共修路200米;甲工程队2天、乙工程队3天共修路350米.
(1)试问甲乙两个工程队每天分别修路多少米?
(2)甲乙两个工程队施工10天后,由于工作需要需从甲队抽调m人去学习新技术,总部要求在规定时间内完成,请问甲队可以抽调多少人?
(3)已知甲工程队每天的施工费用为0.6万元,乙工程队每天的施工费用为0.35万元,要使该工程的施工费用最低,甲乙两队各做多少天?最低费用为多少?
题型:不详难度:| 查看答案
如图,直线AB与坐标轴分别交于点A、点B,且OA、OB的长分别为方程x2-6x+8=0的两个根(OA<OB),点C在y轴上,且OA︰AC=2︰5,直线CD垂直于直线AB于点P,交x轴于点D.

(1)求出点A、点B的坐标.
(2)请求出直线CD的解析式.
(3)若点M为坐标平面内任意一点,在坐标平面内是否存在这样的点M,使以点B、P、D、M为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.