为了促进长三角区域的便捷沟通,实现节时、节能,杭州湾跨海大桥于2008年5月1日通车,下表是宁波到上海两条线路的有关数据:线路弯路(宁波-杭州-上海)直路(宁波

为了促进长三角区域的便捷沟通,实现节时、节能,杭州湾跨海大桥于2008年5月1日通车,下表是宁波到上海两条线路的有关数据:线路弯路(宁波-杭州-上海)直路(宁波

题型:不详难度:来源:
为了促进长三角区域的便捷沟通,实现节时、节能,杭州湾跨海大桥于2008年5月1日通车,下表是宁波到上海两条线路的有关数据:
答案
举一反三
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.

线路弯路(宁波-杭州-上海)直路(宁波-跨海大桥-上海)
路程316公里196公里
过路费140元180元
(1)走弯路需要的时间为:
316
80
小时,走直路需要的时间为:
196
80
小时,
则节省的时间为:
316
80
-
196
80
=1.5(小时);
答:小车走直路比走弯路节省1.5小时;

(2)设小车走直路和走弯路的总费用分别为y1元、y2元,
则y1=5×196x+180;y2=5×316x+140,
①若y1=y2,5×196x+180=5×316x+140
解得:x=
1
15

即当x=
1
15
时,小车走直路的总费用与走弯路的总费用相等;
②若y1>y2,5×196x+180>5×316x+140
解得x<
1
15

即当0<x<
1
15
时,小车走弯路的总费用较小;
③若y1<y2,5×196x+180<5×316x+140
解得x>
1
15

即当x>
1
15
时,小车走直路的总费用较小.
已知A、B两地的路程为240千米.某经销商每天都要用汽车或火车将x吨保鲜品一次性由A地运往B地.受各种因素限制,下一周只能采用汽车和火车中的一种进行运输,且须提前预订.
现有货运收费项目及收费标准表、行驶路程s(千米)与行驶时间t(时)的函数图象(如图1)、上周货运量折线统计图(如图2)等信息如下:
货运收费项目及收费标准表
(1)汽车的速度为______千米/时,火车的速度为______千米/时:
(2)设每天用汽车和火车运输的总费用分别为y(元)和y(元),分别求y、y与x的函数关系式(不必写出x的取值范围),当x为何值时,y>y(总费用=运输费+冷藏费+固定费用)
(3)请你从平均数、折线图走势两个角度分析,建议该经销商应提前为下周预定哪种运输工具,才能使每天的运输总费用较省?
在茶节期间,某茶商订购了甲种茶叶90吨,乙种茶叶80吨,准备用A、B两种型号的货车共20辆运往外地.已知A型货车每辆运费为0.4万元,B型货车每辆运费为0.6万元.
(1)设A型货车安排x辆,总运费为y万元,写出y与x的函数关系式;
(2)若一辆A型货车可装甲种茶叶6吨,乙种茶叶2吨;一辆B型货车可装甲种茶叶3吨,乙种茶叶7吨.按此要求安排A、B两种型号货车一次性运完这批茶叶,共有哪几种运输方案?
(3)说明哪种方案运费最少?最少运费是多少万元?
在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.
(1)求直线AB的解析式;
(2)当t为何值时,以点A、P、Q为顶点的三角形与△AOB相似?
(3)当t=2秒时,四边形OPQB的面积为多少个平方单位?
如图,已知在平面直角坐标系中,直角梯形ABCD,ABCD,AD=CD,∠ABC=90°,A、B在x轴上,点D在y轴上,若tan∠OAD=
4
3
,B点的坐标为(5,0).
(1)求直线AC的解析式;
(2)若点Q、P分别从点C、A同时出发,点Q沿线段CA向点A运动,点P沿线段AB向点B运动,Q点的速度为每秒


5
个单位长度,P点的速度为每秒2个单位长度,设运动时间为t秒,△PQE的面积为S,求S与t的函数关系式(请直接写出自变量t的取值范围);
(3)在(2)的条件下,过P点作PQ的垂线交直线CD于点M,在P、Q运动的过程中,是否在平面内有一点N,使四边形QPMN为正方形?若存在,求出N点的坐标;若不存在,请说明理由.
线段y=-
1
2
x+a
(1≤x≤3),当a的值由-1增加到2时,该线段运动所经过的平面区域的面积为(  )
A.6B.8C.9D.10