试题分析:先根据直线l1:x=1,l2:x=2,l3:x=3,l4:x=4求出S1,S2,S3的面积,找出规律即可得出结论. 解:∵直线l1:x=1,l2:x=2, ∴A1(1,2),B1(1,5),A2(2,1),B2(2,), ∴S1=[(﹣)+(﹣)]×1; (3+)×1=; ∵l3:x=3, ∴A3(3,),B3(3,), ∴A3B3=﹣=1, ∴S2=[(﹣)+(﹣)]×1; ∵l4:x=4, ∴A4(4,),B4(4,), ∴S3=[(﹣)+(﹣)]×1; ∴Sn=[(﹣)+(﹣)]×1; ∴S10=[(﹣)+(﹣)]×1=×(+)×1=. 故选D. 点评:本题考查的是反比例函数综合题,涉及到反比例函数图象上点的坐标特点及梯形的面积公式,根据题意找出规律是解答此题的关键. |