如图,在平面直角坐标系中,函数y=kx(x>0常数k>0)的图象经过点A(1,2),B(m,n)(m>1),过点B作y轴的垂线,垂足为C,若△ABC面积为2,求

如图,在平面直角坐标系中,函数y=kx(x>0常数k>0)的图象经过点A(1,2),B(m,n)(m>1),过点B作y轴的垂线,垂足为C,若△ABC面积为2,求

题型:不详难度:来源:
如图,在平面直角坐标系中,函数y=
k
x
(x>0常数k>0)的图象经过点A(1,2),B(m,n)(m>1),过点B作y轴的垂线,垂足为C,若△ABC面积为2,求点B的坐标______.
答案
∵函数y=
k
x
(x>0常数k>0)的图象经过点A(1,2),
∴把(1,2)代入解析式得2=
k
1

∴k=2
∵B(m,n)(m>1),
∴BC=m,当x=m时,n=
2
m

∴BC边上的高是2-n=2-
2
m

而S△ABC=
1
2
m(2-
2
m
)=2,
∴m=3,
∴把m=3代入y=
2
x

∴n=
2
3

∴点B的坐标是(3,
2
3
).
故答案为:(3,
2
3
).
举一反三
如图,一次函数y=ax+b的图象与反比例函数y=
k
x
的图象交于A、B两点,与x轴交于点C,与y轴交于点D,已知OA=


10
,tan∠AOC=
1
3
,点B的坐标为(m,-2).
(1)求反比例函数及一次函数的解析式;
(2)在y轴上存在一点P,使得△PDC与△ODC相似,请你求出P点的坐标.
题型:不详难度:| 查看答案
一次函数y=-2x+6的图象与x轴、y轴分别相交于点A、B,点P在线段AB上,OP(O是坐标原点)将△OAB分成面积为1:2的两部分,则过点P的反比例函数解析式为______.
题型:不详难度:| 查看答案
在反比例函数y=
1
x
(x>0)的图象上,有一系列点P1、P2、P3、…、Pn,若P1的横坐标为2,且以后每点的横坐标与它前一个点的横坐标的差都为2.现分别过点P1、P2、P3、…、Pn作x轴与y轴的垂线段,构成若干个长方形如图所示,将图中阴影部分的面积从左到右依次记为S1、S2、S3、…、Sn,则S1+S2+S3+…+S2010=______.
题型:不详难度:| 查看答案
如图,正比例函数y=2x与反比例函数y=
k
x
(k>0)
的图象相交于A、C两点,过点A作AD垂直x轴,垂足为D,过点C作CB垂直x轴,垂足为B,连接AB和CD.已知点A的横坐标为2.
(1)求k的值;
(2)求证:四边形ABCD是平行四边形;
(3)P、Q两点是坐标轴上的动点(P为正半轴上的点,Q为负半轴上的点),当以A、C、P、Q四点为顶点的四边形是矩形时,求P、Q两点的坐标.
题型:不详难度:| 查看答案
在直角坐标系内有函数y=
1
2x
(x>0)和一条直线的图象,直线与x、y轴正半轴分别交于点A和点B,且OA=OB=1,点P为曲线上任意一点,它的坐标是(a,b),由点P向x轴、y轴作垂线PM、PN(M、N为垂足)分别与直线AB相交于点E和点F.
(1)如果交点E、F都在线段AB上(如图),分别求出E、F点的坐标(只需写出答案.不需写出计算过程);
(2)当点P在曲线上移动,试求△OEF的面积(结果可用a、b的代数式表示);
(3)如果AF=


6
2
,求
OF
OE
的值.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.