已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程

已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程

题型:不详难度:来源:
已知抛物线yax2bxcx轴交于AB两点,与y轴交于点C,其中点Bx轴的正半轴上,点Cy轴的正半轴上,线段OBOC的长(OB<OC)是方程x2-10x+16=0的两个根,且抛物线的对称轴是直线x=-2.
(1)求ABC三点的坐标;
(2)求此抛物线的表达式;
(3)连接ACBC,若点E是线段AB上的一个动点(与点A、点B不重合),过点EEFACBC于点F,连接CE,设AE的长为m,△CEF的面积为S,求Sm之间的函数关系式,并写出自变量m的取值范围;
(4)在(3)的基础上试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.
答案
(1)A(-6,0)B(2,0)C(0,8)
(2) (3)
(4)存在
解析

试题分析:(1)解方程 
∵点 B x轴的正半轴上, 点Cy轴的正半轴上, 且
∴点B的坐标为(2,0),点C的坐标为(0,8)
又∵抛物线的对称轴是直线
∴由抛物线的对称性可得点A的坐标为(-6,0)
(2)∵点C(0,8)在抛物线的图象上
c=8,将A(-6,0)、B(2,0)代入表达式,得
 解得   
∴所求抛物线的表达式为
(3)依题意,,则
,∴
EFAC ∴△BEF∽△BAC
 即
EF
过点FFGAB,垂足为G,则
 ∴FG·


自变量m的取值范围是
(4)∵  且
∴当时,S有最大值,  
,∴点E的坐标为(-2,0)
∴△BCE为等腰三角形. 
点评:此类题目难度都不小,学生应该多尝试做此类练习题,一般来讲,都有一定规律在里面,学生可以多做,以求举一反三
举一反三
已知:二次函数y=x2+bx+c与x轴相交于A(x1,0)、B(x2,0)两点,其顶点坐标为P(),AB=|x1-x2|,若S△APB=1,则b与c的关系式是(  ).
A.b2-4c+1=0B.b2-4c-1=0C.b2-4c+4=0D.b2-4c-4=0

题型:不详难度:| 查看答案
已知抛物线)与轴相交于点,顶点为.直线 分别与轴,轴相交于两点,并且与直线相交于点.
(1)如图,将沿轴翻折,若点的对应点′恰好落在抛物线上,′与轴交于点,连结,求的值和四边形的面积;

(2)在抛物线)上是否存在一点,使得以为顶点的四边形是平行四边形?若存在,求出点的坐标;若不存在,试说明理由.
题型:不详难度:| 查看答案
已知,如图,A,B分别在x轴和y轴上,且OA=2OB,直线y1=kx+b经过A点与抛物线y2=-x2+2x+3交于B,C两点,
(1)试求k,b的值及C点坐标;
(2)x取何值时y1,y2均随x的增大而增大;
(3)x取何值时y1>y2
题型:不详难度:| 查看答案
如图,抛物线与直线AB交于x轴上的一点A,和另一点B(4,n).点P是抛物线AB两点间部分上的一个动点(不与点AB重合),直线PQ与直线AB垂直,交直线AB于点Q

(1)求抛物线的解析式和cos∠BAO的值。
(2)设点P的横坐标为用含的代数式表示线段PQ的长,并求出线段PQ长的最大值;
(3)点E是抛物线上一点,过点E作EF∥AC,交直线AB与点F,若以E、F、A、C为顶点的四边形为平行四边形,直接写出相应的点E的坐标.
题型:不详难度:| 查看答案
对于的图象下列叙述正确的是(  )
A.顶点坐标为(-3,2)B.对称轴为直线=3
C.当=3时,有最大值2D.当≥3时增大而减小

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.