如图,抛物线与x轴交于A.B两点(点A在点B的左侧),与y轴交于点C,点C与点F关于抛物线的对称轴对称,直线AF交y轴于点E,|OC|:|OA|=5:1.(1)
题型:不详难度:来源:
如图,抛物线与x轴交于A.B两点(点A在点B的左侧),与y轴交于点C,点C与点F关于抛物线的对称轴对称,直线AF交y轴于点E,|OC|:|OA|=5:1. (1)求抛物线的解析式; (2)求直线AF的解析式; (3)在直线AF上是否存在点P,使△CFP是直角三角形?若存在,求出P点坐标;若不存在,说明理由. |
答案
(1)y=x2﹣4x﹣5(2)y=﹣x﹣1 (3) 直线AF上存在点P(0,﹣1)或(0,﹣1)使△CFP是直角三角形 |
解析
解:(1)在y=x2﹣bx﹣5中令x=0,得y=5,∴|OC|=5。 ∵|OC|:|OA|=5:1,∴|OA|=1。∴A(﹣1,0)。 把A(﹣1,0)代入y=x2﹣bx﹣5得(﹣1)2+b﹣5=0,解得b=4。 ∴抛物线的解析式为y=x2﹣4x﹣5。 (2)∵y=x2﹣4x﹣5=(x﹣2)2﹣9,∴抛物线的的对称轴为x=2。 ∵点C与点F关于对称轴对称,C(0,﹣5)∴F(4,﹣5)。 设直线AF的解析式为y=kx+b, 把F(4,﹣5),A(﹣1,0),代入y=kx+b,得 ,解得。∴直线FA的解析式为y=﹣x﹣1。 (3)存在。理由如下: ①当∠FCP=90°时,点P与点E重合, ∵点E是直线y=﹣x﹣1与y轴的交点,∴E(0,﹣1)。∴P(0,﹣1)。 ②当CF是斜边时,过点C作CP⊥AF于点P。 设P(x1,﹣x1﹣1), ∵∠ECF=90°,E(0,﹣1),C(0,﹣5),F(4,﹣5), ∴CE=CF。∴EP=PF。∴CP=PF。 ∴点P在抛物线的对称轴上。∴x1=2。 把x1=2代入y=﹣x﹣1,得y=﹣3。∴P(2,﹣3)。 综上所述,直线AF上存在点P(0,﹣1)或(0,﹣1)使△CFP是直角三角形。 (1)根据抛物线解析式求出OC的长度,再根据比例求出OA的长度,从而得到点A的坐标,然后把点A的坐标代入抛物线解析式计算求出b,即可得到抛物线解析式。 (2)由y=x2﹣4x﹣5=(x﹣2)2﹣9可得对称轴为x=2,根据点C、F关于对称轴对称可得点F的坐标,然后利用待定系数法求直线函数解析式求解即可。 (3)分①点P与点E重合和②CF是斜边两种情况讨论即可。 |
举一反三
如图,抛物线y=ax2+bx+c(a<0)与双曲线相交于点A,B,且抛物线经过坐标原点,点A的坐标为(﹣2,2),点B在第四象限内,过点B作直线BC∥x轴,点C为直线BC与抛物线的另一交点,已知直线BC与x轴之间的距离是点B到y轴的距离的4倍,记抛物线顶点为E. (1)求双曲线和抛物线的解析式; (2)计算△ABC与△ABE的面积; (3)在抛物线上是否存在点D,使△ABD的面积等于△ABE的面积的8倍?若存在,请求出点D的坐标;若不存在,请说明理由. |
要得到二次函数y= -x2+2x-2的图象,需将y=" -" x2的图象( )A.向左平移2个单位,再向下平移2个单位 | B.向右平移2个单位,再向上平移2个单位 | C.向左平移1个单位,再向上平移1个单位 | D.向右平移1个单位,再向下平移1个单位 |
|
如图,二次函数的图像与轴正半轴相交,其顶点坐标为(),下列结论:①;②;③;④. 其中正确结论的个数是 ( )
|
下列关系式中,属于二次函数的是(x为自变量) ( ) |
已知二次函数的图象如图所示,a、b、c满足 ( )
A、a<0,b<0,c>0 B、 a<0,b<0, c<0 C、a<0,b>0,c>0 D、 a>0,b<0,c>0 |
最新试题
热门考点