如图,抛物线与x轴交于A.B两点(点A在点B的左侧),与y轴交于点C,点C与点F关于抛物线的对称轴对称,直线AF交y轴于点E,|OC|:|OA|=5:1.(1)

如图,抛物线与x轴交于A.B两点(点A在点B的左侧),与y轴交于点C,点C与点F关于抛物线的对称轴对称,直线AF交y轴于点E,|OC|:|OA|=5:1.(1)

题型:不详难度:来源:
如图,抛物线与x轴交于A.B两点(点A在点B的左侧),与y轴交于点C,点C与点F关于抛物线的对称轴对称,直线AF交y轴于点E,|OC|:|OA|=5:1.
(1)求抛物线的解析式;
(2)求直线AF的解析式;
(3)在直线AF上是否存在点P,使△CFP是直角三角形?若存在,求出P点坐标;若不存在,说明理由.
答案
(1)y=x2﹣4x﹣5(2)y=﹣x﹣1 (3) 直线AF上存在点P(0,﹣1)或(0,﹣1)使△CFP是直角三角形
解析
解:(1)在y=x2﹣bx﹣5中令x=0,得y=5,∴|OC|=5。
∵|OC|:|OA|=5:1,∴|OA|=1。∴A(﹣1,0)。
把A(﹣1,0)代入y=x2﹣bx﹣5得(﹣1)2+b﹣5=0,解得b=4。
∴抛物线的解析式为y=x2﹣4x﹣5。
(2)∵y=x2﹣4x﹣5=(x﹣2)2﹣9,∴抛物线的的对称轴为x=2。
∵点C与点F关于对称轴对称,C(0,﹣5)∴F(4,﹣5)。
设直线AF的解析式为y=kx+b,
把F(4,﹣5),A(﹣1,0),代入y=kx+b,得
,解得。∴直线FA的解析式为y=﹣x﹣1。
(3)存在。理由如下:
①当∠FCP=90°时,点P与点E重合,
∵点E是直线y=﹣x﹣1与y轴的交点,∴E(0,﹣1)。∴P(0,﹣1)。
②当CF是斜边时,过点C作CP⊥AF于点P。
设P(x1,﹣x1﹣1),
∵∠ECF=90°,E(0,﹣1),C(0,﹣5),F(4,﹣5),
∴CE=CF。∴EP=PF。∴CP=PF。
∴点P在抛物线的对称轴上。∴x1=2。
把x1=2代入y=﹣x﹣1,得y=﹣3。∴P(2,﹣3)。
综上所述,直线AF上存在点P(0,﹣1)或(0,﹣1)使△CFP是直角三角形。
(1)根据抛物线解析式求出OC的长度,再根据比例求出OA的长度,从而得到点A的坐标,然后把点A的坐标代入抛物线解析式计算求出b,即可得到抛物线解析式。
(2)由y=x2﹣4x﹣5=(x﹣2)2﹣9可得对称轴为x=2,根据点C、F关于对称轴对称可得点F的坐标,然后利用待定系数法求直线函数解析式求解即可。
(3)分①点P与点E重合和②CF是斜边两种情况讨论即可。
举一反三
如图,抛物线y=ax2+bx+c(a<0)与双曲线相交于点A,B,且抛物线经过坐标原点,点A的坐标为(﹣2,2),点B在第四象限内,过点B作直线BC∥x轴,点C为直线BC与抛物线的另一交点,已知直线BC与x轴之间的距离是点B到y轴的距离的4倍,记抛物线顶点为E.
(1)求双曲线和抛物线的解析式;
(2)计算△ABC与△ABE的面积;
(3)在抛物线上是否存在点D,使△ABD的面积等于△ABE的面积的8倍?若存在,请求出点D的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
要得到二次函数y= -x2+2x-2的图象,需将y=" -" x2的图象(  )
A.向左平移2个单位,再向下平移2个单位B.向右平移2个单位,再向上平移2个单位
C.向左平移1个单位,再向上平移1个单位D.向右平移1个单位,再向下平移1个单位

题型:不详难度:| 查看答案
如图,二次函数的图像与轴正半轴相交,其顶点坐标为(),下列结论:①;②;③;④
其中正确结论的个数是 (   )
A.1B.2C.3D.4

题型:不详难度:| 查看答案
下列关系式中,属于二次函数的是(x为自变量)    (   )
A.B.C.D.

题型:不详难度:| 查看答案
已知二次函数的图象如图所示,a、b、c满足   (     )

A、a<0,b<0,c>0        B、 a<0,b<0, c<0
C、a<0,b>0,c>0          D、 a>0,b<0,c>0
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.