如图抛物线过坐标原点O和x轴上另一点E,顶点M为 (2,4);矩形ABCD顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3.     小题1

如图抛物线过坐标原点O和x轴上另一点E,顶点M为 (2,4);矩形ABCD顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3.     小题1

题型:不详难度:来源:
如图抛物线过坐标原点O和x轴上另一点E,顶点M为 (2,4);矩形ABCD顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3.     
小题1:求该抛物线所对应的函数关系式;
小题2:将矩形ABCD以每秒1个单位长度的速从图示位置沿x轴正方向匀速平行移动,同时一动点P也以相同速度从点A出发向B匀速移动,设它们运动时间为t秒(0≤t≤3),直线AB与该抛物线交点为N
①当t=时,判断点P是否在直线ME上,说明理由;
②设以P、N、C、D为顶点的多边形面积为S,试问S是否存在最大值?说明理由.
答案

小题1:
小题2:①不在,理由见解析。②S存在最大值.
解析

(2)①点P不在直线ME上.                              
根据抛物线的对称性可知E点的坐标为(4,0),
又M的坐标为(2,4),设直线ME的关系式为y=kx+b.
于是得 ,解得
所以直线ME的关系式为y="-2x+8." …………………………………………………4分
由已知条件易得,当t时,OA=AP   ……………………5分
∵P点的坐标不满足直线ME的关系式y=-2x+8.       
∴当t时,点P不在直线ME上.    ………………………………………6分          
② S存在最大值. 理由如下:                         
∵点A在x轴的非负半轴上,且N在抛物线上,
∴ OA=AP=t.
∴点P,N的坐标分别为(t,t)、(t,-t 2+4t)      
∴AN=-t 2+4t (0≤t≤3) ,

举一反三
如图,抛物线y=ax2+bx+c与x轴交于A(x1,0)、B(x2,0)两点,与y轴交于C点,对称轴与抛物线相交于点P,与直线BC相交于点M,连接PB.已知x1、x2
恰是方程的两根,且sin∠OBC=.

小题1:求该抛物线的解析式;
小题2:抛物线上是否存在一点Q,使△QMB与△PMB的面积相等,若存在,求点Q的坐标;若不存在,说明理由
小题3:在第一象限、对称轴右侧的抛物线上是否存在一点R,使△RPM与△RMB的面积相等,若存在,直接写出点R的坐标;若不存在,说明理由.
题型:不详难度:| 查看答案
如图,∠C=90º,点A、B在∠C的两边上,CA=30,CB=20,连接AB.点P从点B出发,以每秒4个单位长度的速度沿BC的方向运动,到点C停止.当点P与B、C两点不重合时,作PD⊥BC交AB于点D,作DE⊥AC于点E.F为射线CB上一点,使得∠CEF=∠ABC.设点P运动的时间为x秒.
小题1:用含有x的代数式表示CE的长
小题2:求点F与点B重合时x的值
小题3:当点F在线段CB上时,设四边形DECP与四边形DEFB重叠部分图形的面积为y(平方单位).求y与x之间的函数关系式
题型:不详难度:| 查看答案
某超市经销甲、乙两种商品. 现有如下信息:

请根据以上信息,解答下列问题:
小题1:甲、乙两种商品的进货单价各多少元?
小题2:该超市平均每天卖出甲商品50件和乙商品20件.经调查发现,甲、乙两种商品零售单价分别每降0.2元,这两种商品每天可各多销售10件.为了使每天获取更大的利润,超市决定把甲、乙两种商品的零售单价都下降m元.设总利润为n元,请用含m的式子表示超市每天销售甲、乙两种商品获取的总利润n,在不考虑其他因素的条件下,当m定为多少时,才能使超市每天销售甲、乙两种商品获取的总利润最大?每天的最大利润是多少?
题型:不详难度:| 查看答案
已知抛物线
小题1:若抛物线经过原点,求m的值及顶点坐标,并判断抛物线顶点是否在第三象限的平分线所在的直线上;
小题2:是否无论m取任何实数值,抛物线顶点一定不在第四象限?说明理由;当实数m变化时,列出抛物线顶点的纵、横坐标之间的函数关系式,并求出该函数的最小函数值.
题型:不详难度:| 查看答案
抛物线图像如图所示,则一次函数与反比例函数在同一坐标系内的图像大致为(    )
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.