(2011•舟山)已知直线y=kx+3(k<0)分别交x轴、y轴于A、B两点,线段OA上有一动点P由原点O向点A运动,速度为每秒1个单位长度,过点P作x轴的垂线

(2011•舟山)已知直线y=kx+3(k<0)分别交x轴、y轴于A、B两点,线段OA上有一动点P由原点O向点A运动,速度为每秒1个单位长度,过点P作x轴的垂线

题型:不详难度:来源:
(2011•舟山)已知直线y=kx+3(k<0)分别交x轴、y轴于A、B两点,线段OA上有一动点P由原点O向点A运动,速度为每秒1个单位长度,过点P作x轴的垂线交直线AB于点C,设运动时间为t秒.
(1)当k=﹣1时,线段OA上另有一动点Q由点A向点O运动,它与点P以相同速度同时出发,当点P到达点A时两点同时停止运动(如图1).
①直接写出t=1秒时C、Q两点的坐标;
②若以Q、C、A为顶点的三角形与△AOB相似,求t的值.
(2)当时,设以C为顶点的抛物线y=(x+m)2+n与直线AB的另一交点为D(如图2),
①求CD的长;
②设△COD的OC边上的高为h,当t为何值时,h的值最大?
答案
解:(1)①C(1,2),Q(2,0)
②由题意得:P(t,0),C(t,﹣t+3),Q(3﹣t,0)
分两种情况讨论:
情形一:当△AQC∽△AOB时,∠AQC=∠AOB=90°,∴CQ⊥OA,∵CP⊥OA,∴点P与点Q重合,OQ=OP,即3﹣t=t,∴t=1.5
情形二:当△AQC∽△AOB时,∠ACQ=∠AOB=90°,∵OA=OB=3∴△AOB是等腰直角三角形∴△ACQ也是等腰直角三角形∵CP⊥OA∴AQ=2CP,即t=2(﹣t+3)∴t=2∴满足条件的t的值是1.5秒或2秒.
(2)①由题意得:C(t,﹣
∴以C为顶点的抛物线解析式是y=,由
解得
过点D作DE⊥CP于点E,则∠DEC=∠AOB=90°
∵DE∥OA∴∠EDC=∠OAB
∴△DEC∽△AOB∴∵AO=4,AB=5,DE=∴CD=
②∵,CD边上的高=,∴,∴S△COD为定值.
要使OC边上的高h的值最大,只要OC最短,因为当OC⊥AB时OC最短,此时OC的长为,∠BCO=90°
∵∠AOB=90°∴∠COP=90°﹣∠BOC=∠OBA
又∵CP⊥OA∴Rt△PCO∽Rt△OAB
,OP=,即t=


解析

举一反三
(14分)如图所示,在平面直角坐标系中,抛物线经过A(-1,
0)、B(0,-5)、C(5,0).
(1)求此抛物线的表达式;
(2)若平行于轴的直线与此抛物线交于E、F两点,以线段EF为直径的圆与轴相切,
求该圆的半径;
(3)在点B、点C之间的抛物线上有点D,使的面积最大,求此时点D的坐标及
的面积.
题型:不详难度:| 查看答案
已知:抛物线 的顶点为A,与x轴的交点为BC(点B
在点C的左侧).
(1)直接写出抛物线对称轴方程;
(2)若抛物线经过原点,且△ABC为直角三角形,求ab的值;
(3)若D为抛物线对称轴上一点,则以ABCD为顶点的四边形能否为正方形?若能,请写出ab满足的关系式;若不能,说明理由.
题型:不详难度:| 查看答案
(本题满分12分)如图1,抛物线y=ax2+bx+3经过A(-3,0),B(-1,0)两点.(1)求抛物线的解析式;
(2)设抛物线的顶点为M,直线y=-2x+9与y轴交于点C,与直线OM交于点D.现将抛物线平移,保持顶点在直线OD上.若平移的抛物线与射线CD(含端点C)只有一个公共点,求它的顶点横坐标的值或取值范围;
(3)如图2,将抛物线平移,当顶点至原点时,过Q(0,3)作不平行于x轴的直线交抛物线于E,F两点.问在y轴的负半轴上是否存在点P,使△PEF的内心在y轴上.若存在,求出点P的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
如图,抛物线与轴交于,0)、,0)两点,且,与轴交于点,其中是方程的两个根。
(1)求抛物线的解析式;
(2)点是线段上的一个动点,过点,交于点,连接,当的面积最大时,求点的坐标;
(3)点在(1)中抛物线上,点为抛物线上一动点,在轴上是否存在点,使以为顶点的四边形是平行四边形,如果存在,求出所有满足条件的点的坐标,若不存在,请说明理由。
题型:不详难度:| 查看答案
(12分)已知A(1,0)、B(0,-1)、C(-1,2)、D(2,-1)、E(4,2)五个点,抛物线ya(x-1)2k(a>0)经过其中的三个点.
(1)求证:CE两点不可能同时在抛物线ya(x-1)2k(a>0)上;
(2)点A在抛物线ya(x-1)2k(a>0)上吗?为什么?
(3)求ak的值.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.