一座拱型桥,桥下的水面宽度AB是20米,拱高CD是4米.若水面上升3米至EF,则水面宽度EF为多少?(1)若把它看作抛物线的一部分,在坐标系中(如图①),可设抛

一座拱型桥,桥下的水面宽度AB是20米,拱高CD是4米.若水面上升3米至EF,则水面宽度EF为多少?(1)若把它看作抛物线的一部分,在坐标系中(如图①),可设抛

题型:不详难度:来源:
一座拱型桥,桥下的水面宽度AB是20米,拱高CD是4米.若水面上升3米至EF,则水面宽度EF为多少?

(1)若把它看作抛物线的一部分,在坐标系中(如图①),可设抛物线的表达式为y=ax2+c.请你填空:a=______,c=______,EF=______米;
(2)若把它看作圆的一部分,可构造图形(如图②)请你计算:
(3)请你估计(2)中EF与(1)中的EF的差的近似值(误差小于0.1米).
答案
(1)设解析式为y=ax2+c
令x=0,y=4,
所以c=4;令x=10,100a+4=0,a=-0.04=-
1
25

∴解析式为y=-
1
25
x2+4
令y=3,x=±5,
所以EF=10米
∴a=-
1
25
,c=4,EF=10;(每格1分)

(2)设半径为x,在Rt△BOC中,OC=x-4
∴(x-4)2+102=x2
∴x=
29
2

在Rt△FOG中,FG=


(
29
2
)
2
-(
29
2
-1)
2
=2


7

∴EF=4


7
;(3分)

(3)4


7
-10≈4×2.646-10≈0.6(2分).
举一反三
手工课上,小明准备做一个形状是菱形的风筝,这个菱形的两条对角线长度之和恰好为60cm,菱形的面积S(单位:cm2)随其中一条对角线的长x(单位:cm)的变化而变化.
(1)请直接写出S与x之间的函数关系式(不要求写出自变量x的取值范围);
(2)当x是多少时,菱形风筝面积S最大?最大面积是多少?
(参考公式:当x=-
b
2a
时,二次函数y=ax2+bx+c(a0)有最小(大)值
4ac-b2
4a
题型:不详难度:| 查看答案
如图所示,一个运动员推铅球,铅球在点A处出手,出手时球离地面约
5
3
m
.铅球落地点在B处,铅球运行中在运动员前4m处(即OC=4)达到最高点,最高点高为3m.已知铅球经过的路线是抛物线,根据如图所示的直角坐标系,你能算出该运动员的成绩吗?
题型:不详难度:| 查看答案
如图,已知抛物线y=
3
4
x2+bx+c与坐标轴交于A、B、C三点,A点的坐标为(-1,0),过点C的直线y=
3
4t
x-3与x轴交于点Q,点P是线段BC上的一个动点,过P作PH⊥OB于点H.若PB=5t,且0<t<1.
(1)填空:点C的坐标是______,b=______,c=______;
(2)求线段QH的长(用含t的式子表示);
(3)依点P的变化,是否存在t的值,使以P、H、Q为顶点的三角形与△COQ相似?若存在,求出所有t的值;若不存在,说明理由.
题型:不详难度:| 查看答案
如图,抛物线y=ax2+bx(a>0)与双曲线y=
k
x
相交于点A,B.已知点B的坐标为(-2,-2),点A在第一象限内,且tan∠AOx=4.过点A作直线ACx轴,交抛物线于另一点C.
(1)求双曲线和抛物线的解析式;
(2)计算△ABC的面积;
(3)在抛物线上是否存在点D,使△ABD的面积等于△ABC的面积?若存在,请你写出点D的坐标;若不存在,请你说明理由.
题型:不详难度:| 查看答案
已知抛物线y=ax2+bx+c经过(-1,10),(1,4),(2,7)三点,求这个函数的解析式.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.