在平面直角坐标系xOy中,二次函数y1=mx2+(m-3)x-3(m>0)的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)求点A的坐标;(

在平面直角坐标系xOy中,二次函数y1=mx2+(m-3)x-3(m>0)的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)求点A的坐标;(

题型:不详难度:来源:
在平面直角坐标系xOy中,二次函数y1=mx2+(m-3)x-3(m>0)的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.
(1)求点A的坐标;
(2)当∠ABC=45°时,求m的值;
(3)已知一次函数y2=kx+b,点P(n,0)是x轴上的一个动点,在(2)的条件下,过点P垂直于x轴的直线交这个一次函数的图象于点M,交二次函数y=mx2+(m-3)x-3(m>0)的图象于N.若只有当-2<n<2时,点M位于点N的上方,求这个一次函数的解析式.
答案
(1)∵点A、B是二次函数y=mx2+(m-3)x-3(m>0)的图象与x轴的交点,
∴令y=0,即mx2+(m-3)x-3=0
解得x1=-1,x2=
3
m

又∵点A在点B左侧且m>0
∴点A的坐标为(-1,0)

(2)由(1)可知点B的坐标为(
3
m
,0)

∵二次函数的图象与y轴交于点C
∴点C的坐标为(0,-3)
∵∠ABC=45°
∴OB=
3
m
=3

∴m=1

(3)由(2)得,二次函数解析式为y1=x2-2x-3,
∵只有当-2<n<2时,点M位于点N的上方,
∴当-2<n<2时,y1<y2
即一次函数的图象与二次函数的图象交点的横坐标分别为-2和2,
由此可得交点坐标为(-2,5)和(2,-3),
将交点坐标分别代入一次函数解析式y=kx+b中,





-2k+b=5
2k+b=-3
,解得:





k=-2
b=1

∴一次函数解析式为y=-2x+1.
举一反三
如图所示的抛物线是二次函数y=ax2-x+a2-1的图象,那么a的值是______.
题型:不详难度:| 查看答案
如图,已知二次函数y=x2-3x-4的图象交x轴于A、B两点.
(1)若点P在线段AB上运动,作PQ⊥x轴,交抛物线于点Q,求PQ的最大值;
(2)已知点D(5,6)在抛物线上,若点M在线段AD上运动,作MN⊥x轴,交抛物线于点N,求MN的最大值;
(3)在(2)的运动过程中,求△ADN面积的最大值.
题型:不详难度:| 查看答案
如图①,抛物线经过点A(12,0)、B(-4,0)、C(0,-12).顶点为M,过点A的直线y=kx-4交y轴于点N.
(1)求该抛物线的函数关系式和对称轴;
(2)试判断△AMN的形状,并说明理由;
(3)将AN所在的直线l向上平移.平移后的直线l与x轴和y轴分别交于点D、E(如图②).当直线l平移时(包括l与直线AN重合),在抛物线对称轴上是否存在点P,使得△PDE是以DE为直角边的等腰直角三角形?若存在,直接写出所有满足条件的点P的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x-m)2+n的顶点在线段AB上运动(抛物线随顶点一起平移),与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为-3,则点D的横坐标最大值为(  )
A.-3B.1C.5D.8

题型:不详难度:| 查看答案
如图,抛物线y1=a(x+2)2-3与y2=
1
2
(x-3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:
①无论x取何值,y2的值总是正数;
②a=1;
③当x=0时,y2-y1=4
④2AB=3AC.
其中正确结论是______.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.