如图,抛物线经过A,C,D三点,且三点坐标为A(-1,0),C(0,5),D(2,5),抛物线与x轴的另一个交点为B点,点F为y轴上一动点,作平行四边形DFBG

如图,抛物线经过A,C,D三点,且三点坐标为A(-1,0),C(0,5),D(2,5),抛物线与x轴的另一个交点为B点,点F为y轴上一动点,作平行四边形DFBG

题型:不详难度:来源:
如图,抛物线经过A,C,D三点,且三点坐标为A(-1,0),C(0,5),D(2,5),抛物线与x轴的另一个交点为B点,点F为y轴上一动点,作平行四边形DFBG,
(1)B点的坐标为______;
(2)是否存在F点,使四边形DFBG为矩形?如存在,求出F点坐标;如不存在,说明理由;
(3)连结FG,FG的长度是否存在最小值?如存在求出最小值;若不存在说明理由;
(4)若E为AB中点,找出抛物线上满足到E点的距离小于2的所有点的横坐标x的范围:______.
答案
(1)∵C(0,5),D(2,5),
∴抛物线的对称轴为直线x=
2
2
=1,
∵A(-1,0),
∴2×1-(-1)=3,
∴点B的坐标为(3,0);

(2)如图,连接CD,则∠DCF=90°,
∵四边形DFBG为矩形,
∴∠DFC+∠OFB=180°-90°=90°,
∴∠DFB=90°
∵∠OFB+∠OBF=90°,
∴∠DFC=∠OBF,
又∵∠DCF=∠FOB=90°,
∴△CDF△OFB,
CD
OF
=
CF
OB

∵B(3,0),C(0,5),D(2,5),
∴CD=2,OB=3,OC=5,
∴CF=5-OF,
2
OF
=
5-OF
3

整理得,OF2-5OF+6=0,
解得OF=2或OF=3,
∴点F的坐标为(0,2)或(0,3);

(3)连接BD,设FG、BD相交于点H,
∵四边形DFBG是平行四边形,
∴FG、BD互相平分,
∴FG=2FH,
又∵B(3,0),D(2,5),
∴点H的坐标为(2.5,2.5),
根据垂线段最短,FH⊥y轴时,FH最短,
此时,FH=2.5,
FG=2FH=2×2.5=5;

(4)设抛物线解析式为y=a(x-1)2+k(a≠0),
把点A、C的坐标代入得,





4a+k=0
a+k=5

解得





a=-
5
3
k=
20
3

∴抛物线解析式为y=-
5
3
(x-1)2+
20
3

∵E为AB中点,
∴点E的坐标为(1,0),
∴以E为圆心,以2为半径的圆为(x-1)2+y2=4,
与抛物线解析式联立消掉(x-1)2得,-
5
3
(4-y2)+
20
3
=y,
整理得,5y2-3y=0,
解得y1=0,y2=
3
5

y=
3
5
时,-
5
3
(x-1)2+
20
3
=
3
5

整理得,(x-1)2=
91
25

解得x1=
5-


91
5
,x2=
5+


91
5

∴-1<x<
5-


91
5
5+


91
5
<x<3时,抛物线上的点到E点的距离小于2.
故答案为:(1)(3,0);(4)-1<x<
5-


91
5
5+


91
5
<x<3.
举一反三
如图,抛物线y=x2-2x-3与x轴交于A、B两点,与y轴交于点C.
(1)点A的坐标为______,点B的坐标为______,点C的坐标为______.
(2)设抛物线y=x2-2x-3的顶点为M,求四边形ABMC的面积.
题型:不详难度:| 查看答案
已知,如图,抛物线y=ax2+bx+c经过点A(-1,0),B(0,-3),C(3,0)三点.
(1)求抛物线的解析式;
(2)若抛物线的顶点为D,求sin∠BOD的值.
题型:不详难度:| 查看答案
已知抛物线y=ax2+bx+c与x轴交于A、B两点(点B在点A的右侧,且AB=8),与y轴交于点C,其中点A在x轴的负半轴上,点C在y轴的正半轴上,线段OA、OC的长(OA<OC)是方程x2-14x+48=0的两个根.
(1)求此抛物线的解析式;
(2)连接AC、BC,若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EFAC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;
(3)在(2)的基础上试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.
题型:不详难度:| 查看答案
已知:抛物线y=a(x-2)2+b(ab<0)的顶点为A,与x轴的交点为B,C
(1)抛物线对称轴方程为______;
(2)若D点为抛物线对称轴上一点,若以A,B,C,D为顶点的四边形是正方形,则a,b满足的关系式是______.
题型:不详难度:| 查看答案
如图,已知抛物线与x轴交于点A(-2,0),B(4,0),与y轴交于点C(0,8),
(1)试求抛物线的解析式;
(2)设点D是该抛物线的顶点,试求直线CD的解析式;
(3)若直线CD交x轴于点E,过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴上、下平移,使抛物线与线段EF总有公共点.试探究:抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.