正方形ABCD的边长为2,E是射线CD上的动点(不与点D重合),直线AE交直线BC于点G,∠BAE的平分线交射线BC于点O.(1)如图,当CE=23时,求线段B

正方形ABCD的边长为2,E是射线CD上的动点(不与点D重合),直线AE交直线BC于点G,∠BAE的平分线交射线BC于点O.(1)如图,当CE=23时,求线段B

题型:不详难度:来源:
正方形ABCD的边长为2,E是射线CD上的动点(不与点D重合),直线AE交直线BC于点G,∠BAE的平分线交射线BC于点O.
(1)如图,当CE=
2
3
时,求线段BG的长;
(2)当点O在线段BC上时,设
CE
ED
=x
,BO=y,求y关于x的函数解析式;
(3)当CE=2ED时,求线段BO的长.
答案
(1)在边长为2的正方形ABCD中,CE=
2
3
,得DE=CD-CE=2-
2
3
=
4
3

又∵ADBC,即ADCG,
CG
AD
=
CE
DE
=
1
2

得CG=1.
∵BC=2,
∴BG=3;

(2)当点O在线段BC上时,过点O作OF⊥AG,垂足为点F.
∵AO为∠BAE的角平分线,∠ABO=90°,
∴OF=BO=y.
在正方形ABCD中,ADBC,
CG
AD
=
CE
ED
=x

∵AD=2,
∴CG=2x.
又∵
CE
ED
=x
,CE+ED=2,
∴得CE=
2x
1+x

∵在Rt△ABG中,AB=2,BG=2+2x,∠B=90°,
∴AG=2


x2+2x+2

∵AF=AB=2,
∴FG=AG-AF=2


x2+2x+2
-2

OF
FG
=
AB
BG

y=
AB
BG
•FG

y=
2


x2+2x+2
-2
x+1
.(x≥0);

(3)当CE=2ED时,

①当点O在线段BC上时如图(1),即x=2,由(2)得OB=y=
2


10
-2
3

②当点O在线段BC延长线上时,如图(2),CE=2DE=4,ED=2,在Rt△ADE中,AE=2


2

设AO交线段DC于点H,
∵AO是∠BAE的平分线,
∴∠BAH=∠HAE,
又∵ABCD,
∴∠BAH=∠AHE.
∴∠HAE=∠AHE.
∴EH=AE=2


2

∴CH=4-2


2

∵ABCD,
CH
AB
=
CO
BO

4-2


2
2
=
BO-2
BO
,得BO=2


2
+2.
举一反三
如图,二次函数y=ax2+bx+c的图象与x轴交于两个不同的点A(-2,0)、B(4,0),与y轴交于点C(0,3),连接BC、AC,该二次函数图象的对称轴与x轴相交于点D.
(1)求这个二次函数的解析式、点D的坐标及直线BC的函数解析式;
(2)点Q在线段BC上,使得以点Q、D、B为顶点的三角形与△ABC相似,求出点Q的坐标;
(3)在(2)的条件下,若存在点Q,请任选一个Q点求出△BDQ外接圆圆心的坐标.
题型:不详难度:| 查看答案
根据条件求二次函数的解析式:
(1)抛物线过(-1,-22),(0,-8),(2,8)三点;
(2)有一个抛物线形拱桥,其最大高度为16m,跨度为40m,现把它的示意图放在平面直角坐标系中如图,求抛物线的解析式.
题型:不详难度:| 查看答案
在体育测试时,初三的一名高个子男同学推铅球,已知铅球所经过的路线是某个二次函数图象的一部分,如图所示,如果这个男同学的出手处A点的坐标(0,2),铅球路线的最高处B点的坐标为(6,5).
(1)求这个二次函数的解析式;
(2)该男同学把铅球推出去多远?(精确到0.01米,


15
=3.873)
题型:不详难度:| 查看答案
抛物线y=ax2+bx+c(a<0)交x轴于点A(-1,0)、B(3,0),交y轴于点C,顶点为D,以BD为直径的⊙M恰好过点C.
(1)求顶点D的坐标(用a的代数式表示);
(2)求抛物线的解析式;
(3)抛物线上是否存在点P使△PBD为直角三角形?若存在,求出点P的坐标;若不存在,说明理由.
题型:不详难度:| 查看答案
抛物线y=x2+bx+c经过点(0,3)和(-1,0),那么抛物线的解析式是______.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.