如图,二次函数y=ax2-5ax+4a(a≠0)的图象与x轴交于A、B两点(A在B的左侧),与y轴交于点C,点C关于抛物线对称轴的对称点为D,连接BD。(1)求

如图,二次函数y=ax2-5ax+4a(a≠0)的图象与x轴交于A、B两点(A在B的左侧),与y轴交于点C,点C关于抛物线对称轴的对称点为D,连接BD。(1)求

题型:福建省中考真题难度:来源:
如图,二次函数y=ax2-5ax+4a(a≠0)的图象与x轴交于A、B两点(A在B的左侧),与y轴交于点C,点C关于抛物线对称轴的对称点为D,连接BD。
(1)求A、B两点的坐标;
(2)若AD⊥BC,垂足为P,求二次函数的表达式;
(3)在(2)的条件下,若直线x=m把△ABD的面积分为1:2的两部分,求m的值。
答案
解:(1)∵抛物线与x轴交于A、B两点
∴ax2-5ax+4a=0
∵a≠0
∴x2-5x+4=0,
解得x1=1,x2=4
∴A(1,0),B(4,0)。(2)连结AC、CD,
由对称性知:四边形ABDC 是等腰梯形
∴∠CAB=∠DBA
在△ABC与△BAD中,AC=BD,∠CAB=∠DBA,AB=BA
∴△ABC≌△BAD
∴∠1=∠2
∵AD⊥BC
∴∠1=∠2=45°
∵∠BOC=90°
∴∠OCB=∠1=45°
∴OC=OB=4
∴C(0,4)
把C(0,4)的坐标代入y=ax2-5ax+4a
得4a=4
∴a=1
∴二次函数的表达式为y=x2-5x+4。(3)S△ABD=×3×4=6
设直线x=m与AD、AB分别交于M、N,
则AN=m-1
由(2)得∠1=45°,∠2=90°
∴MN=AN=m-1
∴S△AMN=(m-1)2
当S△AMN=S△ABD时,(m-1)2=×6   
解得m=3(负值舍去)
当S△AMN=S△ABD时,(m-1)2=×6
解得m=+1(负值舍去)
过B作BE⊥AB交AD于E,则S△ABE=4.5,
S△ABD=4,
∵4.5>4
∴点N在线段AB上 
∴m<4
综上所述,m的值为3或+1。
举一反三

一条抛物线y=x2+mx+n经过点(0,3)与(4,3)。
(1)求这条抛物线的解析式,并写出它的顶点坐标;
(2)现有一半径为1,圆心P在抛物线上运动的动圆,当⊙P与坐标轴相切时,求圆心P的坐标;
(3)⊙P能与两坐标轴都相切吗?如果不能,试通过上下平移抛物线y=x2+mx+n,使⊙P与两坐标轴都相切。(要说明平移方法)

题型:甘肃省中考真题难度:| 查看答案
将抛物线y=-3x2向上平移一个单位后,得到的抛物线解析式是(    )。
题型:江西省中考真题难度:| 查看答案
如图所示,在平面直角坐标系中,矩形ABOC的边BO在x轴的负半轴上,边OC在y轴的正半轴上,且AB=1,OB=,矩形ABOC绕点O按顺时针方向旋转60°后得到矩形EFOD,点A的对应点为点E,点B的对应点为点F,点C的对应点为点D,抛物线y=ax2+bx+c过点A,E,D。
(1)判断点E是否在y轴上,并说明理由;
(2)求抛物线的函数表达式;
(3)在x轴的上方是否存在点P,点Q,使以点O,B,P,Q为顶点的平行四边形的面积是矩形ABOC面积的2倍,且点P在抛物线上,若存在,请求出点P,点Q的坐标;若不存在,请说明理由。
题型:辽宁省中考真题难度:| 查看答案
两个直角边为6的全等的等腰直角三角形Rt△AOB和Rt△CED,按如图一所示的位置放置,点O与E重合。(1)Rt△AOB固定不动,Rt△CED沿x轴以每秒2个单位长度的速度向右运动,当点E运动到与点B重合时停止,设运动x秒后,Rt△AOB和Rt△CED的重叠部分面积为y,求y与x之间的函数关系式;
(2)当Rt△CED以(1)中的速度和方向运动,运动时间x=2秒时,Rt△CED运动到如图二所示的位置,若抛物线y=x2+bx+c过点A,G,求抛物线的解析式;
(3)现有一动点P在(2)中的抛物线上运动,试问点P在运动过程中是否存在点P到x轴或y轴的距离为2的情况?若存在,请求出点P的坐标;若不存在,请说明理由。

题型:内蒙古自治区中考真题难度:| 查看答案
在平面直角坐标系中给定以下五个点A(-3,0),B(-1,4),C(0,3),D(),E(1,0)。

(1)请从五点中任选三点,求一条以平行于y轴的直线为对称轴的抛物线的解析式;
(2)求该抛物线的顶点坐标和对称轴,并画出草图;
(3)已知点F(-1,)在抛物线的对称轴上,直线y=过点G(-1,)且垂直于对称轴,
验证:以E(1,0)为圆心,EF为半径的圆与直线y=相切,请你进一步验证,以抛物线上的点D()为圆心DF为半径的圆也与直线y= 相切,由此你能猜想到怎样的结论。
题型:内蒙古自治区中考真题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.